Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordin Unicode version

Theorem ordin 4913
 Description: The intersection of two ordinal classes is ordinal. Proposition 7.9 of [TakeutiZaring] p. 37. (Contributed by NM, 9-May-1994.)
Assertion
Ref Expression
ordin

Proof of Theorem ordin
StepHypRef Expression
1 ordtr 4897 . . 3
2 ordtr 4897 . . 3
3 trin 4555 . . 3
41, 2, 3syl2an 477 . 2
5 inss2 3718 . . 3
6 trssord 4900 . . 3
75, 6mp3an2 1312 . 2
84, 7sylancom 667 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  /\wa 369  i^icin 3474  C_wss 3475  Trwtr 4545  Ordword 4882 This theorem is referenced by:  onin  4914  ordtri3or  4915  ordelinel  4981  smores  7042  smores2  7044  ordtypelem5  7968  ordtypelem7  7970 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-v 3111  df-in 3482  df-ss 3489  df-uni 4250  df-tr 4546  df-po 4805  df-so 4806  df-fr 4843  df-we 4845  df-ord 4886
 Copyright terms: Public domain W3C validator