![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ordpipq | Unicode version |
Description: Ordering of positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ordpipq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 4716 | . . 3 | |
2 | opex 4716 | . . 3 | |
3 | eleq1 2529 | . . . . . 6 | |
4 | 3 | anbi1d 704 | . . . . 5 |
5 | 4 | anbi1d 704 | . . . 4 |
6 | fveq2 5871 | . . . . . . . 8 | |
7 | opelxp 5034 | . . . . . . . . . 10 | |
8 | op1stg 6812 | . . . . . . . . . 10 | |
9 | 7, 8 | sylbi 195 | . . . . . . . . 9 |
10 | 9 | adantr 465 | . . . . . . . 8 |
11 | 6, 10 | sylan9eq 2518 | . . . . . . 7 |
12 | 11 | oveq1d 6311 | . . . . . 6 |
13 | fveq2 5871 | . . . . . . . 8 | |
14 | op2ndg 6813 | . . . . . . . . . 10 | |
15 | 7, 14 | sylbi 195 | . . . . . . . . 9 |
16 | 15 | adantr 465 | . . . . . . . 8 |
17 | 13, 16 | sylan9eq 2518 | . . . . . . 7 |
18 | 17 | oveq2d 6312 | . . . . . 6 |
19 | 12, 18 | breq12d 4465 | . . . . 5 |
20 | 19 | pm5.32da 641 | . . . 4 |
21 | 5, 20 | bitrd 253 | . . 3 |
22 | eleq1 2529 | . . . . . 6 | |
23 | 22 | anbi2d 703 | . . . . 5 |
24 | 23 | anbi1d 704 | . . . 4 |
25 | fveq2 5871 | . . . . . . . 8 | |
26 | opelxp 5034 | . . . . . . . . . 10 | |
27 | op2ndg 6813 | . . . . . . . . . 10 | |
28 | 26, 27 | sylbi 195 | . . . . . . . . 9 |
29 | 28 | adantl 466 | . . . . . . . 8 |
30 | 25, 29 | sylan9eq 2518 | . . . . . . 7 |
31 | 30 | oveq2d 6312 | . . . . . 6 |
32 | fveq2 5871 | . . . . . . . 8 | |
33 | op1stg 6812 | . . . . . . . . . 10 | |
34 | 26, 33 | sylbi 195 | . . . . . . . . 9 |
35 | 34 | adantl 466 | . . . . . . . 8 |
36 | 32, 35 | sylan9eq 2518 | . . . . . . 7 |
37 | 36 | oveq1d 6311 | . . . . . 6 |
38 | 31, 37 | breq12d 4465 | . . . . 5 |
39 | 38 | pm5.32da 641 | . . . 4 |
40 | 24, 39 | bitrd 253 | . . 3 |
41 | df-ltpq 9309 | . . 3 | |
42 | 1, 2, 21, 40, 41 | brab 4775 | . 2 |
43 | simpr 461 | . . 3 | |
44 | ltrelpi 9288 | . . . . . 6 | |
45 | 44 | brel 5053 | . . . . 5 |
46 | dmmulpi 9290 | . . . . . . 7 | |
47 | 0npi 9281 | . . . . . . 7 | |
48 | 46, 47 | ndmovrcl 6461 | . . . . . 6 |
49 | 46, 47 | ndmovrcl 6461 | . . . . . 6 |
50 | 48, 49 | anim12i 566 | . . . . 5 |
51 | opelxpi 5036 | . . . . . . 7 | |
52 | 51 | ad2ant2rl 748 | . . . . . 6 |
53 | simprl 756 | . . . . . . 7 | |
54 | simplr 755 | . . . . . . 7 | |
55 | opelxpi 5036 | . . . . . . 7 | |
56 | 53, 54, 55 | syl2anc 661 | . . . . . 6 |
57 | 52, 56 | jca 532 | . . . . 5 |
58 | 45, 50, 57 | 3syl 20 | . . . 4 |
59 | 58 | ancri 552 | . . 3 |
60 | 43, 59 | impbii 188 | . 2 |
61 | 42, 60 | bitri 249 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 /\ wa 369
= wceq 1395 e. wcel 1818 <. cop 4035
class class class wbr 4452 X. cxp 5002
` cfv 5593 (class class class)co 6296
c1st 6798
c2nd 6799
cnpi 9243 cmi 9245
clti 9246
cltpq 9249 |
This theorem is referenced by: ordpinq 9342 lterpq 9369 ltanq 9370 ltmnq 9371 1lt2nq 9372 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-omul 7154 df-ni 9271 df-mi 9273 df-lti 9274 df-ltpq 9309 |
Copyright terms: Public domain | W3C validator |