![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ordsucun | Unicode version |
Description: The successor of the maximum (i.e. union) of two ordinals is the maximum of their successors. (Contributed by NM, 28-Nov-2003.) |
Ref | Expression |
---|---|
ordsucun |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordun 4984 | . . . 4 | |
2 | ordsuc 6649 | . . . . 5 | |
3 | ordelon 4907 | . . . . . 6 | |
4 | 3 | ex 434 | . . . . 5 |
5 | 2, 4 | sylbi 195 | . . . 4 |
6 | 1, 5 | syl 16 | . . 3 |
7 | ordsuc 6649 | . . . 4 | |
8 | ordsuc 6649 | . . . 4 | |
9 | ordun 4984 | . . . . 5 | |
10 | ordelon 4907 | . . . . . 6 | |
11 | 10 | ex 434 | . . . . 5 |
12 | 9, 11 | syl 16 | . . . 4 |
13 | 7, 8, 12 | syl2anb 479 | . . 3 |
14 | ordssun 4982 | . . . . . . 7 | |
15 | 14 | adantl 466 | . . . . . 6 |
16 | ordsssuc 4969 | . . . . . . 7 | |
17 | 1, 16 | sylan2 474 | . . . . . 6 |
18 | ordsssuc 4969 | . . . . . . . 8 | |
19 | 18 | adantrr 716 | . . . . . . 7 |
20 | ordsssuc 4969 | . . . . . . . 8 | |
21 | 20 | adantrl 715 | . . . . . . 7 |
22 | 19, 21 | orbi12d 709 | . . . . . 6 |
23 | 15, 17, 22 | 3bitr3d 283 | . . . . 5 |
24 | elun 3644 | . . . . 5 | |
25 | 23, 24 | syl6bbr 263 | . . . 4 |
26 | 25 | expcom 435 | . . 3 |
27 | 6, 13, 26 | pm5.21ndd 354 | . 2 |
28 | 27 | eqrdv 2454 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
\/ wo 368 /\ wa 369 = wceq 1395
e. wcel 1818 u. cun 3473 C_ wss 3475
Ord word 4882
con0 4883 suc csuc 4885 |
This theorem is referenced by: rankprb 8290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-tr 4546 df-eprel 4796 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-suc 4889 |
Copyright terms: Public domain | W3C validator |