Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtr1 Unicode version

Theorem ordtr1 4926
 Description: Transitive law for ordinal classes. (Contributed by NM, 12-Dec-2004.)
Assertion
Ref Expression
ordtr1

Proof of Theorem ordtr1
StepHypRef Expression
1 ordtr 4897 . 2
2 trel 4552 . 2
31, 2syl 16 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  /\wa 369  e.wcel 1818  Trwtr 4545  Ordword 4882 This theorem is referenced by:  ontr1  4929  dfsmo2  7037  smores2  7044  smoel  7050  smogt  7057  ordiso2  7961  r1ordg  8217  r1pwss  8223  r1val1  8225  rankr1ai  8237  rankval3b  8265  rankonidlem  8267  onssr1  8270  cofsmo  8670  fpwwe2lem9  9037  bnj1098  33842  bnj594  33970 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111  df-in 3482  df-ss 3489  df-uni 4250  df-tr 4546  df-ord 4886
 Copyright terms: Public domain W3C validator