![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ordtypelem2 | Unicode version |
Description: Lemma for ordtype 7978. (Contributed by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
ordtypelem.1 | |
ordtypelem.2 | |
ordtypelem.3 | |
ordtypelem.5 | |
ordtypelem.6 | |
ordtypelem.7 | |
ordtypelem.8 |
Ref | Expression |
---|---|
ordtypelem2 |
O
,,, ,, ,,,,,,,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtypelem.5 | . . . . . . . . . 10 | |
2 | ssrab2 3584 | . . . . . . . . . 10 | |
3 | 1, 2 | eqsstri 3533 | . . . . . . . . 9 |
4 | 3 | a1i 11 | . . . . . . . 8 |
5 | 4 | sselda 3503 | . . . . . . 7 |
6 | onss 6626 | . . . . . . 7 | |
7 | 5, 6 | syl 16 | . . . . . 6 |
8 | eloni 4893 | . . . . . . . 8 | |
9 | 5, 8 | syl 16 | . . . . . . 7 |
10 | imaeq2 5338 | . . . . . . . . . . . 12 | |
11 | 10 | raleqdv 3060 | . . . . . . . . . . 11 |
12 | 11 | rexbidv 2968 | . . . . . . . . . 10 |
13 | 12, 1 | elrab2 3259 | . . . . . . . . 9 |
14 | 13 | simprbi 464 | . . . . . . . 8 |
15 | 14 | adantl 466 | . . . . . . 7 |
16 | ordelss 4899 | . . . . . . . . 9 | |
17 | imass2 5377 | . . . . . . . . 9 | |
18 | ssralv 3563 | . . . . . . . . . 10 | |
19 | 18 | reximdv 2931 | . . . . . . . . 9 |
20 | 16, 17, 19 | 3syl 20 | . . . . . . . 8 |
21 | 20 | ralrimdva 2875 | . . . . . . 7 |
22 | 9, 15, 21 | sylc 60 | . . . . . 6 |
23 | ssrab 3577 | . . . . . 6 | |
24 | 7, 22, 23 | sylanbrc 664 | . . . . 5 |
25 | 24, 1 | syl6sseqr 3550 | . . . 4 |
26 | 25 | ralrimiva 2871 | . . 3 |
27 | dftr3 4549 | . . 3 | |
28 | 26, 27 | sylibr 212 | . 2 |
29 | ordon 6618 | . . 3 | |
30 | trssord 4900 | . . 3 | |
31 | 3, 29, 30 | mp3an23 1316 | . 2 |
32 | 28, 31 | syl 16 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 = wceq 1395 e. wcel 1818
A. wral 2807 E. wrex 2808 { crab 2811
cvv 3109
C_ wss 3475 class class class wbr 4452
e. cmpt 4510 Tr wtr 4545 Se wse 4841
We wwe 4842 Ord word 4882 con0 4883 ran crn 5005 " cima 5007
iota_ crio 6256
recs crecs 7060 OrdIso coi 7955 |
This theorem is referenced by: ordtypelem5 7968 ordtypelem6 7969 ordtypelem7 7970 ordtypelem8 7971 ordtypelem9 7972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-tr 4546 df-eprel 4796 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-xp 5010 df-cnv 5012 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 |
Copyright terms: Public domain | W3C validator |