MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordzsl Unicode version

Theorem ordzsl 6680
Description: An ordinal is zero, a successor ordinal, or a limit ordinal. (Contributed by NM, 1-Oct-2003.)
Assertion
Ref Expression
ordzsl
Distinct variable group:   ,

Proof of Theorem ordzsl
StepHypRef Expression
1 orduninsuc 6678 . . . . . 6
21biimprd 223 . . . . 5
3 unizlim 4999 . . . . 5
42, 3sylibd 214 . . . 4
54orrd 378 . . 3
6 3orass 976 . . . 4
7 or12 523 . . . 4
86, 7bitri 249 . . 3
95, 8sylibr 212 . 2
10 ord0 4935 . . . 4
11 ordeq 4890 . . . 4
1210, 11mpbiri 233 . . 3
13 suceloni 6648 . . . . . 6
14 eleq1 2529 . . . . . 6
1513, 14syl5ibr 221 . . . . 5
16 eloni 4893 . . . . 5
1715, 16syl6com 35 . . . 4
1817rexlimiv 2943 . . 3
19 limord 4942 . . 3
2012, 18, 193jaoi 1291 . 2
219, 20impbii 188 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  <->wb 184  \/wo 368  \/w3o 972  =wceq 1395  e.wcel 1818  E.wrex 2808   c0 3784  U.cuni 4249  Ordword 4882   con0 4883  Limwlim 4884  succsuc 4885
This theorem is referenced by:  onzsl  6681  tfrlem16  7081  omeulem1  7250  oaabs2  7313  rankxplim3  8320  rankxpsuc  8321  cardlim  8374  cardaleph  8491  cflim2  8664  dfrdg2  29228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691  ax-un 6592
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-pss 3491  df-nul 3785  df-if 3942  df-pw 4014  df-sn 4030  df-pr 4032  df-tp 4034  df-op 4036  df-uni 4250  df-br 4453  df-opab 4511  df-tr 4546  df-eprel 4796  df-po 4805  df-so 4806  df-fr 4843  df-we 4845  df-ord 4886  df-on 4887  df-lim 4888  df-suc 4889
  Copyright terms: Public domain W3C validator