![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > orim12d | Unicode version |
Description: Disjoin antecedents and consequents in a deduction. (Contributed by NM, 10-May-1994.) |
Ref | Expression |
---|---|
orim12d.1 | |
orim12d.2 |
Ref | Expression |
---|---|
orim12d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orim12d.1 | . 2 | |
2 | orim12d.2 | . 2 | |
3 | pm3.48 833 | . 2 | |
4 | 1, 2, 3 | syl2anc 661 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 \/ wo 368 |
This theorem is referenced by: orim1d 839 orim2d 840 3orim123d 1307 preq12b 4206 prel12 4207 fr2nr 4862 ordtri3or 4915 sossfld 5459 funun 5635 soisores 6223 sorpsscmpl 6591 suceloni 6648 ordunisuc2 6679 fnse 6917 oaord 7215 omord2 7235 omcan 7237 oeord 7256 oecan 7257 nnaord 7287 nnmord 7300 omsmo 7322 swoer 7358 unxpwdom 8036 rankxplim3 8320 cdainflem 8592 ackbij2 8644 sornom 8678 fin23lem20 8738 fpwwe2lem10 9038 inatsk 9177 ltadd2 9709 ltord1 10104 ltmul1 10417 lt2msq 10454 xmullem2 11486 difreicc 11681 fzospliti 11857 om2uzlti 12061 om2uzlt2i 12062 om2uzf1oi 12064 absor 13133 ruclem12 13974 dvdslelem 14030 odd2np1lem 14045 odd2np1 14046 isprm6 14250 pythagtrip 14358 pc2dvds 14402 mreexexlem4d 15044 mreexexd 15045 irredrmul 17356 mplsubrglem 18100 mplsubrglemOLD 18101 znidomb 18600 ppttop 19508 filcon 20384 trufil 20411 ufildr 20432 plycj 22674 cosord 22919 logdivlt 23006 isosctrlem2 23153 atans2 23262 wilthlem2 23343 basellem3 23356 lgsdir2lem4 23601 pntpbnd1 23771 mirhl 24059 axcontlem2 24268 axcontlem4 24270 ex-natded5.13-2 25137 hiidge0 26015 chirredlem4 27312 ifbieq12d2 27420 disjxpin 27447 mul2lt0bi 27569 iocinif 27592 erdszelem11 28645 erdsze2lem2 28648 dfon2lem5 29219 trpredrec 29321 nofv 29417 btwnconn1lem14 29750 btwnconn2 29752 ispridlc 30467 rexzrexnn0 30737 pell14qrdich 30805 acongsym 30914 dvdsacongtr 30922 lcvexchlem4 34762 lcvexchlem5 34763 paddss1 35541 paddss2 35542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 |
Copyright terms: Public domain | W3C validator |