Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  oteq2 Unicode version

Theorem oteq2 4227
 Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.)
Assertion
Ref Expression
oteq2

Proof of Theorem oteq2
StepHypRef Expression
1 opeq2 4218 . . 3
21opeq1d 4223 . 2
3 df-ot 4038 . 2
4 df-ot 4038 . 2
52, 3, 43eqtr4g 2523 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  =wceq 1395  <.cop 4035  <.cotp 4037 This theorem is referenced by:  oteq2d  4230  efgi  16737  efgtf  16740  efgtval  16741  el2wlkonot  24869  el2spthonot  24870  frg2wot1  25057  usg2spot2nb  25065 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-ot 4038
 Copyright terms: Public domain W3C validator