MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oteq3 Unicode version

Theorem oteq3 4228
Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.)
Assertion
Ref Expression
oteq3

Proof of Theorem oteq3
StepHypRef Expression
1 opeq2 4218 . 2
2 df-ot 4038 . 2
3 df-ot 4038 . 2
41, 2, 33eqtr4g 2523 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  =wceq 1395  <.cop 4035  <.cotp 4037
This theorem is referenced by:  oteq3d  4231  otsndisj  4757  otiunsndisj  4758  efgi0  16738  efgi1  16739  otiunsndisjX  32301  mapdhcl  37454  mapdh6dN  37466  mapdh8  37516  mapdh9a  37517  mapdh9aOLDN  37518  hdmap1l6d  37541  hdmapval  37558  hdmapval2  37562  hdmapval3N  37568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-ot 4038
  Copyright terms: Public domain W3C validator