![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > oteqex | Unicode version |
Description: Equivalence of existence implied by equality of ordered triples. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
oteqex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 998 | . . 3 | |
2 | 1 | a1i 11 | . 2 |
3 | simp3 998 | . . 3 | |
4 | oteqex2 4744 | . . 3 | |
5 | 3, 4 | syl5ibr 221 | . 2 |
6 | opex 4716 | . . . . . . . 8 | |
7 | opthg 4727 | . . . . . . . 8 | |
8 | 6, 7 | mpan 670 | . . . . . . 7 |
9 | 8 | simprbda 623 | . . . . . 6 |
10 | opeqex 4743 | . . . . . 6 | |
11 | 9, 10 | syl 16 | . . . . 5 |
12 | 4 | adantl 466 | . . . . 5 |
13 | 11, 12 | anbi12d 710 | . . . 4 |
14 | df-3an 975 | . . . 4 | |
15 | df-3an 975 | . . . 4 | |
16 | 13, 14, 15 | 3bitr4g 288 | . . 3 |
17 | 16 | expcom 435 | . 2 |
18 | 2, 5, 17 | pm5.21ndd 354 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 cvv 3109
<. cop 4035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 |
Copyright terms: Public domain | W3C validator |