MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovif Unicode version

Theorem ovif 6379
Description: Move a conditional outside of an operation (Contributed by Thierry Arnoux, 25-Jan-2017.)
Assertion
Ref Expression
ovif

Proof of Theorem ovif
StepHypRef Expression
1 oveq1 6303 . 2
2 oveq1 6303 . 2
31, 2ifsb 3954 1
Colors of variables: wff setvar class
Syntax hints:  =wceq 1395  ifcif 3941  (class class class)co 6296
This theorem is referenced by:  scmatscm  19015  pmatcollpwscmatlem1  19290  idpm2idmp  19302  monmat2matmon  19325  chmatval  19330  leibpi  23273  musumsum  23468  muinv  23469  dchrinvcl  23528  rpvmasum2  23697  padicabvcxp  23817  pnfneige0  27933  plymulx0  28504  ftc1anclem6  30095  linc0scn0  33024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-br 4453  df-iota 5556  df-fv 5601  df-ov 6299
  Copyright terms: Public domain W3C validator