![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ovmpt2dxf | Unicode version |
Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
ovmpt2dx.1 | |
ovmpt2dx.2 | |
ovmpt2dx.3 | |
ovmpt2dx.4 | |
ovmpt2dx.5 | |
ovmpt2dx.6 | |
ovmpt2dxf.px | |
ovmpt2dxf.py | |
ovmpt2dxf.ay | |
ovmpt2dxf.bx | |
ovmpt2dxf.sx | |
ovmpt2dxf.sy |
Ref | Expression |
---|---|
ovmpt2dxf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovmpt2dx.1 | . . 3 | |
2 | 1 | oveqd 6313 | . 2 |
3 | ovmpt2dx.4 | . . . 4 | |
4 | ovmpt2dxf.px | . . . . 5 | |
5 | ovmpt2dx.5 | . . . . . 6 | |
6 | ovmpt2dxf.py | . . . . . . 7 | |
7 | eqid 2457 | . . . . . . . . 9 | |
8 | 7 | ovmpt4g 6425 | . . . . . . . 8 |
9 | 8 | a1i 11 | . . . . . . 7 |
10 | 6, 9 | alrimi 1877 | . . . . . 6 |
11 | 5, 10 | spsbcd 3341 | . . . . 5 |
12 | 4, 11 | alrimi 1877 | . . . 4 |
13 | 3, 12 | spsbcd 3341 | . . 3 |
14 | 5 | adantr 465 | . . . . 5 |
15 | simplr 755 | . . . . . . . 8 | |
16 | 3 | ad2antrr 725 | . . . . . . . 8 |
17 | 15, 16 | eqeltrd 2545 | . . . . . . 7 |
18 | 5 | ad2antrr 725 | . . . . . . . 8 |
19 | simpr 461 | . . . . . . . 8 | |
20 | ovmpt2dx.3 | . . . . . . . . 9 | |
21 | 20 | adantr 465 | . . . . . . . 8 |
22 | 18, 19, 21 | 3eltr4d 2560 | . . . . . . 7 |
23 | ovmpt2dx.2 | . . . . . . . . 9 | |
24 | 23 | anassrs 648 | . . . . . . . 8 |
25 | ovmpt2dx.6 | . . . . . . . . . 10 | |
26 | elex 3118 | . . . . . . . . . 10 | |
27 | 25, 26 | syl 16 | . . . . . . . . 9 |
28 | 27 | ad2antrr 725 | . . . . . . . 8 |
29 | 24, 28 | eqeltrd 2545 | . . . . . . 7 |
30 | biimt 335 | . . . . . . 7 | |
31 | 17, 22, 29, 30 | syl3anc 1228 | . . . . . 6 |
32 | 15, 19 | oveq12d 6314 | . . . . . . 7 |
33 | 32, 24 | eqeq12d 2479 | . . . . . 6 |
34 | 31, 33 | bitr3d 255 | . . . . 5 |
35 | ovmpt2dxf.ay | . . . . . . 7 | |
36 | 35 | nfeq2 2636 | . . . . . 6 |
37 | 6, 36 | nfan 1928 | . . . . 5 |
38 | nfmpt22 6365 | . . . . . . . 8 | |
39 | nfcv 2619 | . . . . . . . 8 | |
40 | 35, 38, 39 | nfov 6322 | . . . . . . 7 |
41 | ovmpt2dxf.sy | . . . . . . 7 | |
42 | 40, 41 | nfeq 2630 | . . . . . 6 |
43 | 42 | a1i 11 | . . . . 5 |
44 | 14, 34, 37, 43 | sbciedf 3363 | . . . 4 |
45 | nfcv 2619 | . . . . . . 7 | |
46 | nfmpt21 6364 | . . . . . . 7 | |
47 | ovmpt2dxf.bx | . . . . . . 7 | |
48 | 45, 46, 47 | nfov 6322 | . . . . . 6 |
49 | ovmpt2dxf.sx | . . . . . 6 | |
50 | 48, 49 | nfeq 2630 | . . . . 5 |
51 | 50 | a1i 11 | . . . 4 |
52 | 3, 44, 4, 51 | sbciedf 3363 | . . 3 |
53 | 13, 52 | mpbid 210 | . 2 |
54 | 2, 53 | eqtrd 2498 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
F/ wnf 1616 e. wcel 1818 F/_ wnfc 2605
cvv 3109
[. wsbc 3327 (class class class)co 6296
e. cmpt2 6298 |
This theorem is referenced by: ovmpt2dx 6429 elovmpt2rab 6521 elovmpt2rab1 6522 ovmpt3rab1 6534 mpt2xopoveq 6966 fvmpt2curryd 7019 mdetralt2 19111 mdetunilem2 19115 gsummatr01lem4 19160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-iota 5556 df-fun 5595 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 |
Copyright terms: Public domain | W3C validator |