![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > pc11 | Unicode version |
Description: The prime count function, viewed as a function from to , is one-to-one. (Contributed by Mario Carneiro, 23-Feb-2014.) |
Ref | Expression |
---|---|
pc11 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 6304 | . . 3 | |
2 | 1 | ralrimivw 2872 | . 2 |
3 | nn0z 10912 | . . . 4 | |
4 | nn0z 10912 | . . . 4 | |
5 | zq 11217 | . . . . . . . . . . 11 | |
6 | pcxcl 14384 | . . . . . . . . . . 11 | |
7 | 5, 6 | sylan2 474 | . . . . . . . . . 10 |
8 | zq 11217 | . . . . . . . . . . 11 | |
9 | pcxcl 14384 | . . . . . . . . . . 11 | |
10 | 8, 9 | sylan2 474 | . . . . . . . . . 10 |
11 | 7, 10 | anim12dan 837 | . . . . . . . . 9 |
12 | xrletri3 11387 | . . . . . . . . 9 | |
13 | 11, 12 | syl 16 | . . . . . . . 8 |
14 | 13 | ancoms 453 | . . . . . . 7 |
15 | 14 | ralbidva 2893 | . . . . . 6 |
16 | r19.26 2984 | . . . . . 6 | |
17 | 15, 16 | syl6bb 261 | . . . . 5 |
18 | pc2dvds 14402 | . . . . . 6 | |
19 | pc2dvds 14402 | . . . . . . 7 | |
20 | 19 | ancoms 453 | . . . . . 6 |
21 | 18, 20 | anbi12d 710 | . . . . 5 |
22 | 17, 21 | bitr4d 256 | . . . 4 |
23 | 3, 4, 22 | syl2an 477 | . . 3 |
24 | dvdseq 14033 | . . . 4 | |
25 | 24 | ex 434 | . . 3 |
26 | 23, 25 | sylbid 215 | . 2 |
27 | 2, 26 | impbid2 204 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
A. wral 2807 class class class wbr 4452
(class class class)co 6296 cxr 9648
cle 9650 cn0 10820
cz 10889 cq 11211 cdvds 13986 cprime 14217 cpc 14360 |
This theorem is referenced by: pcprod 14414 prmreclem2 14435 1arith 14445 isppw2 23389 sqf11 23413 bposlem3 23561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-2o 7150 df-oadd 7153 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-sup 7921 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-q 11212 df-rp 11250 df-fz 11702 df-fl 11929 df-mod 11997 df-seq 12108 df-exp 12167 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-dvds 13987 df-gcd 14145 df-prm 14218 df-pc 14361 |
Copyright terms: Public domain | W3C validator |