![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > pcbc | Unicode version |
Description: Calculate the prime count of a binomial coefficient. (Contributed by Mario Carneiro, 11-Mar-2014.) (Revised by Mario Carneiro, 21-May-2014.) |
Ref | Expression |
---|---|
pcbc |
P
, ,N
,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 998 | . . 3 | |
2 | nnnn0 10827 | . . . . . 6 | |
3 | 2 | 3ad2ant1 1017 | . . . . 5 |
4 | faccl 12363 | . . . . 5 | |
5 | 3, 4 | syl 16 | . . . 4 |
6 | 5 | nnzd 10993 | . . 3 |
7 | 5 | nnne0d 10605 | . . 3 |
8 | fznn0sub 11745 | . . . . . 6 | |
9 | 8 | 3ad2ant2 1018 | . . . . 5 |
10 | faccl 12363 | . . . . 5 | |
11 | 9, 10 | syl 16 | . . . 4 |
12 | elfznn0 11800 | . . . . . 6 | |
13 | 12 | 3ad2ant2 1018 | . . . . 5 |
14 | faccl 12363 | . . . . 5 | |
15 | 13, 14 | syl 16 | . . . 4 |
16 | 11, 15 | nnmulcld 10608 | . . 3 |
17 | pcdiv 14376 | . . 3 | |
18 | 1, 6, 7, 16, 17 | syl121anc 1233 | . 2 |
19 | bcval2 12383 | . . . 4 | |
20 | 19 | 3ad2ant2 1018 | . . 3 |
21 | 20 | oveq2d 6312 | . 2 |
22 | fzfid 12083 | . . . 4 | |
23 | nnre 10568 | . . . . . . . . 9 | |
24 | 23 | 3ad2ant1 1017 | . . . . . . . 8 |
25 | 24 | adantr 465 | . . . . . . 7 |
26 | simpl3 1001 | . . . . . . . . 9 | |
27 | prmnn 14220 | . . . . . . . . 9 | |
28 | 26, 27 | syl 16 | . . . . . . . 8 |
29 | elfznn 11743 | . . . . . . . . . 10 | |
30 | 29 | nnnn0d 10877 | . . . . . . . . 9 |
31 | 30 | adantl 466 | . . . . . . . 8 |
32 | 28, 31 | nnexpcld 12331 | . . . . . . 7 |
33 | 25, 32 | nndivred 10609 | . . . . . 6 |
34 | 33 | flcld 11935 | . . . . 5 |
35 | 34 | zcnd 10995 | . . . 4 |
36 | 13 | nn0red 10878 | . . . . . . . . . 10 |
37 | 24, 36 | resubcld 10012 | . . . . . . . . 9 |
38 | 37 | adantr 465 | . . . . . . . 8 |
39 | 38, 32 | nndivred 10609 | . . . . . . 7 |
40 | 39 | flcld 11935 | . . . . . 6 |
41 | 40 | zcnd 10995 | . . . . 5 |
42 | 36 | adantr 465 | . . . . . . . 8 |
43 | 42, 32 | nndivred 10609 | . . . . . . 7 |
44 | 43 | flcld 11935 | . . . . . 6 |
45 | 44 | zcnd 10995 | . . . . 5 |
46 | 41, 45 | addcld 9636 | . . . 4 |
47 | 22, 35, 46 | fsumsub 13603 | . . 3 |
48 | 3 | nn0zd 10992 | . . . . . 6 |
49 | uzid 11124 | . . . . . 6 | |
50 | 48, 49 | syl 16 | . . . . 5 |
51 | pcfac 14418 | . . . . 5 | |
52 | 3, 50, 1, 51 | syl3anc 1228 | . . . 4 |
53 | 13 | nn0ge0d 10880 | . . . . . . . . 9 |
54 | 24, 36 | subge02d 10169 | . . . . . . . . 9 |
55 | 53, 54 | mpbid 210 | . . . . . . . 8 |
56 | 13 | nn0zd 10992 | . . . . . . . . . 10 |
57 | 48, 56 | zsubcld 10999 | . . . . . . . . 9 |
58 | eluz 11123 | . . . . . . . . 9 | |
59 | 57, 48, 58 | syl2anc 661 | . . . . . . . 8 |
60 | 55, 59 | mpbird 232 | . . . . . . 7 |
61 | pcfac 14418 | . . . . . . 7 | |
62 | 9, 60, 1, 61 | syl3anc 1228 | . . . . . 6 |
63 | elfzuz3 11714 | . . . . . . . 8 | |
64 | 63 | 3ad2ant2 1018 | . . . . . . 7 |
65 | pcfac 14418 | . . . . . . 7 | |
66 | 13, 64, 1, 65 | syl3anc 1228 | . . . . . 6 |
67 | 62, 66 | oveq12d 6314 | . . . . 5 |
68 | 11 | nnzd 10993 | . . . . . 6 |
69 | 11 | nnne0d 10605 | . . . . . 6 |
70 | 15 | nnzd 10993 | . . . . . 6 |
71 | 15 | nnne0d 10605 | . . . . . 6 |
72 | pcmul 14375 | . . . . . 6 | |
73 | 1, 68, 69, 70, 71, 72 | syl122anc 1237 | . . . . 5 |
74 | 22, 41, 45 | fsumadd 13561 | . . . . 5 |
75 | 67, 73, 74 | 3eqtr4d 2508 | . . . 4 |
76 | 52, 75 | oveq12d 6314 | . . 3 |
77 | 47, 76 | eqtr4d 2501 | . 2 |
78 | 18, 21, 77 | 3eqtr4d 2508 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 =/= wne 2652 class class class wbr 4452
` cfv 5593 (class class class)co 6296
cr 9512 0 cc0 9513 1 c1 9514
caddc 9516 cmul 9518 cle 9650 cmin 9828 cdiv 10231 cn 10561 cn0 10820
cz 10889 cuz 11110
cfz 11701 cfl 11927 cexp 12166 cfa 12353 cbc 12380
sum_ csu 13508 cprime 14217 cpc 14360 |
This theorem is referenced by: pcbcctr 23551 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-2o 7150 df-oadd 7153 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-sup 7921 df-oi 7956 df-card 8341 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-q 11212 df-rp 11250 df-fz 11702 df-fzo 11825 df-fl 11929 df-mod 11997 df-seq 12108 df-exp 12167 df-fac 12354 df-bc 12381 df-hash 12406 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-clim 13311 df-sum 13509 df-dvds 13987 df-gcd 14145 df-prm 14218 df-pc 14361 |
Copyright terms: Public domain | W3C validator |