![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > pceu | Unicode version |
Description: Uniqueness for the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.) |
Ref | Expression |
---|---|
pcval.1 | |
pcval.2 |
Ref | Expression |
---|---|
pceu |
N
P
,,,, ,S
,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 756 | . . . 4 | |
2 | elq 11213 | . . . 4 | |
3 | 1, 2 | sylib 196 | . . 3 |
4 | ovex 6324 | . . . . . . . . 9 | |
5 | biidd 237 | . . . . . . . . 9 | |
6 | 4, 5 | ceqsexv 3146 | . . . . . . . 8 |
7 | exancom 1671 | . . . . . . . 8 | |
8 | 6, 7 | bitr3i 251 | . . . . . . 7 |
9 | 8 | rexbii 2959 | . . . . . 6 |
10 | rexcom4 3129 | . . . . . 6 | |
11 | 9, 10 | bitri 249 | . . . . 5 |
12 | 11 | rexbii 2959 | . . . 4 |
13 | rexcom4 3129 | . . . 4 | |
14 | 12, 13 | bitri 249 | . . 3 |
15 | 3, 14 | sylib 196 | . 2 |
16 | pcval.1 | . . . . . . . . . . 11 | |
17 | pcval.2 | . . . . . . . . . . 11 | |
18 | eqid 2457 | . . . . . . . . . . 11 | |
19 | eqid 2457 | . . . . . . . . . . 11 | |
20 | simp11l 1107 | . . . . . . . . . . 11 | |
21 | simp11r 1108 | . . . . . . . . . . 11 | |
22 | simp12 1027 | . . . . . . . . . . 11 | |
23 | simp13l 1111 | . . . . . . . . . . 11 | |
24 | simp2 997 | . . . . . . . . . . 11 | |
25 | simp3l 1024 | . . . . . . . . . . 11 | |
26 | 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 | pceulem 14369 | . . . . . . . . . 10 |
27 | simp13r 1112 | . . . . . . . . . 10 | |
28 | simp3r 1025 | . . . . . . . . . 10 | |
29 | 26, 27, 28 | 3eqtr4d 2508 | . . . . . . . . 9 |
30 | 29 | 3exp 1195 | . . . . . . . 8 |
31 | 30 | rexlimdvv 2955 | . . . . . . 7 |
32 | 31 | 3exp 1195 | . . . . . 6 |
33 | 32 | adantrl 715 | . . . . 5 |
34 | 33 | rexlimdvv 2955 | . . . 4 |
35 | 34 | impd 431 | . . 3 |
36 | 35 | alrimivv 1720 | . 2 |
37 | eqeq1 2461 | . . . . . 6 | |
38 | 37 | anbi2d 703 | . . . . 5 |
39 | 38 | 2rexbidv 2975 | . . . 4 |
40 | oveq1 6303 | . . . . . . . . 9 | |
41 | 40 | eqeq2d 2471 | . . . . . . . 8 |
42 | breq2 4456 | . . . . . . . . . . . . 13 | |
43 | 42 | rabbidv 3101 | . . . . . . . . . . . 12 |
44 | 43 | supeq1d 7926 | . . . . . . . . . . 11 |
45 | 16, 44 | syl5eq 2510 | . . . . . . . . . 10 |
46 | 45 | oveq1d 6311 | . . . . . . . . 9 |
47 | 46 | eqeq2d 2471 | . . . . . . . 8 |
48 | 41, 47 | anbi12d 710 | . . . . . . 7 |
49 | 48 | rexbidv 2968 | . . . . . 6 |
50 | oveq2 6304 | . . . . . . . . 9 | |
51 | 50 | eqeq2d 2471 | . . . . . . . 8 |
52 | breq2 4456 | . . . . . . . . . . . . 13 | |
53 | 52 | rabbidv 3101 | . . . . . . . . . . . 12 |
54 | 53 | supeq1d 7926 | . . . . . . . . . . 11 |
55 | 17, 54 | syl5eq 2510 | . . . . . . . . . 10 |
56 | 55 | oveq2d 6312 | . . . . . . . . 9 |
57 | 56 | eqeq2d 2471 | . . . . . . . 8 |
58 | 51, 57 | anbi12d 710 | . . . . . . 7 |
59 | 58 | cbvrexv 3085 | . . . . . 6 |
60 | 49, 59 | syl6bb 261 | . . . . 5 |
61 | 60 | cbvrexv 3085 | . . . 4 |
62 | 39, 61 | syl6bb 261 | . . 3 |
63 | 62 | eu4 2338 | . 2 |
64 | 15, 36, 63 | sylanbrc 664 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 A. wal 1393 = wceq 1395
E. wex 1612 e. wcel 1818 E! weu 2282
=/= wne 2652 E. wrex 2808 { crab 2811
class class class wbr 4452 (class class class)co 6296
sup csup 7920
cr 9512 0 cc0 9513 clt 9649 cmin 9828 cdiv 10231 cn 10561 cn0 10820
cz 10889 cq 11211 cexp 12166 cdvds 13986 cprime 14217 |
This theorem is referenced by: pczpre 14371 pcdiv 14376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-2o 7150 df-oadd 7153 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-sup 7921 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-q 11212 df-rp 11250 df-fl 11929 df-mod 11997 df-seq 12108 df-exp 12167 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-dvds 13987 df-gcd 14145 df-prm 14218 |
Copyright terms: Public domain | W3C validator |