![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > pcexp | Unicode version |
Description: Prime power of an exponential. (Contributed by Mario Carneiro, 10-Aug-2015.) |
Ref | Expression |
---|---|
pcexp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 6304 | . . . . 5 | |
2 | 1 | oveq2d 6312 | . . . 4 |
3 | oveq1 6303 | . . . 4 | |
4 | 2, 3 | eqeq12d 2479 | . . 3 |
5 | oveq2 6304 | . . . . 5 | |
6 | 5 | oveq2d 6312 | . . . 4 |
7 | oveq1 6303 | . . . 4 | |
8 | 6, 7 | eqeq12d 2479 | . . 3 |
9 | oveq2 6304 | . . . . 5 | |
10 | 9 | oveq2d 6312 | . . . 4 |
11 | oveq1 6303 | . . . 4 | |
12 | 10, 11 | eqeq12d 2479 | . . 3 |
13 | oveq2 6304 | . . . . 5 | |
14 | 13 | oveq2d 6312 | . . . 4 |
15 | oveq1 6303 | . . . 4 | |
16 | 14, 15 | eqeq12d 2479 | . . 3 |
17 | oveq2 6304 | . . . . 5 | |
18 | 17 | oveq2d 6312 | . . . 4 |
19 | oveq1 6303 | . . . 4 | |
20 | 18, 19 | eqeq12d 2479 | . . 3 |
21 | pc1 14379 | . . . . 5 | |
22 | 21 | adantr 465 | . . . 4 |
23 | qcn 11225 | . . . . . . 7 | |
24 | 23 | ad2antrl 727 | . . . . . 6 |
25 | 24 | exp0d 12304 | . . . . 5 |
26 | 25 | oveq2d 6312 | . . . 4 |
27 | pcqcl 14380 | . . . . . 6 | |
28 | 27 | zcnd 10995 | . . . . 5 |
29 | 28 | mul02d 9799 | . . . 4 |
30 | 22, 26, 29 | 3eqtr4d 2508 | . . 3 |
31 | oveq1 6303 | . . . . 5 | |
32 | expp1 12173 | . . . . . . . . 9 | |
33 | 24, 32 | sylan 471 | . . . . . . . 8 |
34 | 33 | oveq2d 6312 | . . . . . . 7 |
35 | simpll 753 | . . . . . . . 8 | |
36 | simplrl 761 | . . . . . . . . 9 | |
37 | simplrr 762 | . . . . . . . . 9 | |
38 | nn0z 10912 | . . . . . . . . . 10 | |
39 | 38 | adantl 466 | . . . . . . . . 9 |
40 | qexpclz 12187 | . . . . . . . . 9 | |
41 | 36, 37, 39, 40 | syl3anc 1228 | . . . . . . . 8 |
42 | 24 | adantr 465 | . . . . . . . . 9 |
43 | 42, 37, 39 | expne0d 12316 | . . . . . . . 8 |
44 | pcqmul 14377 | . . . . . . . 8 | |
45 | 35, 41, 43, 36, 37, 44 | syl122anc 1237 | . . . . . . 7 |
46 | 34, 45 | eqtrd 2498 | . . . . . 6 |
47 | nn0cn 10830 | . . . . . . . . 9 | |
48 | 47 | adantl 466 | . . . . . . . 8 |
49 | 1cnd 9633 | . . . . . . . 8 | |
50 | 28 | adantr 465 | . . . . . . . 8 |
51 | 48, 49, 50 | adddird 9642 | . . . . . . 7 |
52 | 50 | mulid2d 9635 | . . . . . . . 8 |
53 | 52 | oveq2d 6312 | . . . . . . 7 |
54 | 51, 53 | eqtrd 2498 | . . . . . 6 |
55 | 46, 54 | eqeq12d 2479 | . . . . 5 |
56 | 31, 55 | syl5ibr 221 | . . . 4 |
57 | 56 | ex 434 | . . 3 |
58 | negeq 9835 | . . . . 5 | |
59 | nnnn0 10827 | . . . . . . . . 9 | |
60 | expneg 12174 | . . . . . . . . 9 | |
61 | 24, 59, 60 | syl2an 477 | . . . . . . . 8 |
62 | 61 | oveq2d 6312 | . . . . . . 7 |
63 | simpll 753 | . . . . . . . 8 | |
64 | 59, 41 | sylan2 474 | . . . . . . . 8 |
65 | 59, 43 | sylan2 474 | . . . . . . . 8 |
66 | pcrec 14382 | . . . . . . . 8 | |
67 | 63, 64, 65, 66 | syl12anc 1226 | . . . . . . 7 |
68 | 62, 67 | eqtrd 2498 | . . . . . 6 |
69 | nncn 10569 | . . . . . . 7 | |
70 | mulneg1 10018 | . . . . . . 7 | |
71 | 69, 28, 70 | syl2anr 478 | . . . . . 6 |
72 | 68, 71 | eqeq12d 2479 | . . . . 5 |
73 | 58, 72 | syl5ibr 221 | . . . 4 |
74 | 73 | ex 434 | . . 3 |
75 | 4, 8, 12, 16, 20, 30, 57, 74 | zindd 10990 | . 2 |
76 | 75 | 3impia 1193 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
=/= wne 2652 (class class class)co 6296
cc 9511 0 cc0 9513 1 c1 9514
caddc 9516 cmul 9518 -u cneg 9829 cdiv 10231 cn 10561 cn0 10820
cz 10889 cq 11211 cexp 12166 cprime 14217 cpc 14360 |
This theorem is referenced by: qexpz 14420 expnprm 14421 dchrisum0flblem1 23693 dchrisum0flblem2 23694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-2o 7150 df-oadd 7153 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-sup 7921 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-q 11212 df-rp 11250 df-fl 11929 df-mod 11997 df-seq 12108 df-exp 12167 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-dvds 13987 df-gcd 14145 df-prm 14218 df-pc 14361 |
Copyright terms: Public domain | W3C validator |