![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > pcprmpw2 | Unicode version |
Description: Self-referential expression for a prime power. (Contributed by Mario Carneiro, 16-Jan-2015.) |
Ref | Expression |
---|---|
pcprmpw2 |
P
,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 755 | . . . . 5 | |
2 | 1 | nnnn0d 10877 | . . . 4 |
3 | prmnn 14220 | . . . . . . 7 | |
4 | 3 | ad2antrr 725 | . . . . . 6 |
5 | pccl 14373 | . . . . . . 7 | |
6 | 5 | adantr 465 | . . . . . 6 |
7 | 4, 6 | nnexpcld 12331 | . . . . 5 |
8 | 7 | nnnn0d 10877 | . . . 4 |
9 | 6 | nn0red 10878 | . . . . . . . . . . 11 |
10 | 9 | leidd 10144 | . . . . . . . . . 10 |
11 | simpll 753 | . . . . . . . . . . 11 | |
12 | 6 | nn0zd 10992 | . . . . . . . . . . 11 |
13 | pcid 14396 | . . . . . . . . . . 11 | |
14 | 11, 12, 13 | syl2anc 661 | . . . . . . . . . 10 |
15 | 10, 14 | breqtrrd 4478 | . . . . . . . . 9 |
16 | 15 | ad2antrr 725 | . . . . . . . 8 |
17 | simpr 461 | . . . . . . . . 9 | |
18 | 17 | oveq1d 6311 | . . . . . . . 8 |
19 | 17 | oveq1d 6311 | . . . . . . . 8 |
20 | 16, 18, 19 | 3brtr4d 4482 | . . . . . . 7 |
21 | simplrr 762 | . . . . . . . . . . . . 13 | |
22 | prmz 14221 | . . . . . . . . . . . . . . 15 | |
23 | 22 | adantl 466 | . . . . . . . . . . . . . 14 |
24 | 1 | adantr 465 | . . . . . . . . . . . . . . 15 |
25 | 24 | nnzd 10993 | . . . . . . . . . . . . . 14 |
26 | simprl 756 | . . . . . . . . . . . . . . . . 17 | |
27 | 4, 26 | nnexpcld 12331 | . . . . . . . . . . . . . . . 16 |
28 | 27 | adantr 465 | . . . . . . . . . . . . . . 15 |
29 | 28 | nnzd 10993 | . . . . . . . . . . . . . 14 |
30 | dvdstr 14018 | . . . . . . . . . . . . . 14 | |
31 | 23, 25, 29, 30 | syl3anc 1228 | . . . . . . . . . . . . 13 |
32 | 21, 31 | mpan2d 674 | . . . . . . . . . . . 12 |
33 | simpr 461 | . . . . . . . . . . . . 13 | |
34 | 11 | adantr 465 | . . . . . . . . . . . . 13 |
35 | simplrl 761 | . . . . . . . . . . . . 13 | |
36 | prmdvdsexpr 14257 | . . . . . . . . . . . . 13 | |
37 | 33, 34, 35, 36 | syl3anc 1228 | . . . . . . . . . . . 12 |
38 | 32, 37 | syld 44 | . . . . . . . . . . 11 |
39 | 38 | necon3ad 2667 | . . . . . . . . . 10 |
40 | 39 | imp 429 | . . . . . . . . 9 |
41 | simplr 755 | . . . . . . . . . 10 | |
42 | 1 | ad2antrr 725 | . . . . . . . . . 10 |
43 | pceq0 14394 | . . . . . . . . . 10 | |
44 | 41, 42, 43 | syl2anc 661 | . . . . . . . . 9 |
45 | 40, 44 | mpbird 232 | . . . . . . . 8 |
46 | 7 | ad2antrr 725 | . . . . . . . . . 10 |
47 | 41, 46 | pccld 14374 | . . . . . . . . 9 |
48 | 47 | nn0ge0d 10880 | . . . . . . . 8 |
49 | 45, 48 | eqbrtrd 4472 | . . . . . . 7 |
50 | 20, 49 | pm2.61dane 2775 | . . . . . 6 |
51 | 50 | ralrimiva 2871 | . . . . 5 |
52 | 1 | nnzd 10993 | . . . . . 6 |
53 | 7 | nnzd 10993 | . . . . . 6 |
54 | pc2dvds 14402 | . . . . . 6 | |
55 | 52, 53, 54 | syl2anc 661 | . . . . 5 |
56 | 51, 55 | mpbird 232 | . . . 4 |
57 | pcdvds 14387 | . . . . 5 | |
58 | 57 | adantr 465 | . . . 4 |
59 | dvdseq 14033 | . . . 4 | |
60 | 2, 8, 56, 58, 59 | syl22anc 1229 | . . 3 |
61 | 60 | rexlimdvaa 2950 | . 2 |
62 | 3 | adantr 465 | . . . . . . 7 |
63 | 62, 5 | nnexpcld 12331 | . . . . . 6 |
64 | 63 | nnzd 10993 | . . . . 5 |
65 | iddvds 13997 | . . . . 5 | |
66 | 64, 65 | syl 16 | . . . 4 |
67 | oveq2 6304 | . . . . . 6 | |
68 | 67 | breq2d 4464 | . . . . 5 |
69 | 68 | rspcev 3210 | . . . 4 |
70 | 5, 66, 69 | syl2anc 661 | . . 3 |
71 | breq1 4455 | . . . 4 | |
72 | 71 | rexbidv 2968 | . . 3 |
73 | 70, 72 | syl5ibrcom 222 | . 2 |
74 | 61, 73 | impbid 191 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 = wceq 1395
e. wcel 1818 =/= wne 2652 A. wral 2807
E. wrex 2808 class class class wbr 4452
(class class class)co 6296 0 cc0 9513
cle 9650 cn 10561 cn0 10820
cz 10889 cexp 12166 cdvds 13986 cprime 14217 cpc 14360 |
This theorem is referenced by: pcprmpw 14406 pgpfi1 16615 pgpfi 16625 sylow2alem2 16638 lt6abl 16897 pgpfac1lem3a 17127 dvdsppwf1o 23462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-2o 7150 df-oadd 7153 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-sup 7921 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-q 11212 df-rp 11250 df-fz 11702 df-fl 11929 df-mod 11997 df-seq 12108 df-exp 12167 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-dvds 13987 df-gcd 14145 df-prm 14218 df-pc 14361 |
Copyright terms: Public domain | W3C validator |