![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > pcval | Unicode version |
Description: The value of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.) (Revised by Mario Carneiro, 3-Oct-2014.) |
Ref | Expression |
---|---|
pcval.1 | |
pcval.2 |
Ref | Expression |
---|---|
pcval |
N
P
,,,, ,S
,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 461 | . . . . . 6 | |
2 | 1 | eqeq1d 2459 | . . . . 5 |
3 | eqeq1 2461 | . . . . . . . 8 | |
4 | oveq1 6303 | . . . . . . . . . . . . . 14 | |
5 | 4 | breq1d 4462 | . . . . . . . . . . . . 13 |
6 | 5 | rabbidv 3101 | . . . . . . . . . . . 12 |
7 | 6 | supeq1d 7926 | . . . . . . . . . . 11 |
8 | pcval.1 | . . . . . . . . . . 11 | |
9 | 7, 8 | syl6eqr 2516 | . . . . . . . . . 10 |
10 | 4 | breq1d 4462 | . . . . . . . . . . . . 13 |
11 | 10 | rabbidv 3101 | . . . . . . . . . . . 12 |
12 | 11 | supeq1d 7926 | . . . . . . . . . . 11 |
13 | pcval.2 | . . . . . . . . . . 11 | |
14 | 12, 13 | syl6eqr 2516 | . . . . . . . . . 10 |
15 | 9, 14 | oveq12d 6314 | . . . . . . . . 9 |
16 | 15 | eqeq2d 2471 | . . . . . . . 8 |
17 | 3, 16 | bi2anan9r 874 | . . . . . . 7 |
18 | 17 | 2rexbidv 2975 | . . . . . 6 |
19 | 18 | iotabidv 5577 | . . . . 5 |
20 | 2, 19 | ifbieq2d 3966 | . . . 4 |
21 | df-pc 14361 | . . . 4 | |
22 | pnfex 11351 | . . . . 5 | |
23 | iotaex 5573 | . . . . 5 | |
24 | 22, 23 | ifex 4010 | . . . 4 |
25 | 20, 21, 24 | ovmpt2a 6433 | . . 3 |
26 | ifnefalse 3953 | . . 3 | |
27 | 25, 26 | sylan9eq 2518 | . 2 |
28 | 27 | anasss 647 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 =/= wne 2652
E. wrex 2808 { crab 2811 if cif 3941
class class class wbr 4452 iota cio 5554
(class class class)co 6296 sup csup 7920
cr 9512 0 cc0 9513 cpnf 9646 clt 9649 cmin 9828 cdiv 10231 cn 10561 cn0 10820
cz 10889 cq 11211 cexp 12166 cdvds 13986 cprime 14217 cpc 14360 |
This theorem is referenced by: pczpre 14371 pcdiv 14376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-iota 5556 df-fun 5595 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-sup 7921 df-pnf 9651 df-xr 9653 df-pc 14361 |
Copyright terms: Public domain | W3C validator |