MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano5 Unicode version

Theorem peano5 6723
Description: The induction postulate: any class containing zero and closed under the successor operation contains all natural numbers. One of Peano's five postulates for arithmetic. Proposition 7.30(5) of [TakeutiZaring] p. 43, except our proof does not require the Axiom of Infinity. The more traditional statement of mathematical induction as a theorem schema, with a basis and an induction step, is derived from this theorem as theorem findes 6730. (Contributed by NM, 18-Feb-2004.)
Assertion
Ref Expression
peano5
Distinct variable group:   ,

Proof of Theorem peano5
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eldifn 3626 . . . . . 6
21adantl 466 . . . . 5
3 eldifi 3625 . . . . . . . . . 10
43adantl 466 . . . . . . . . 9
5 elndif 3627 . . . . . . . . . 10
6 eleq1 2529 . . . . . . . . . . . 12
76biimpcd 224 . . . . . . . . . . 11
87necon3bd 2669 . . . . . . . . . 10
95, 8mpan9 469 . . . . . . . . 9
10 nnsuc 6717 . . . . . . . . 9
114, 9, 10syl2anc 661 . . . . . . . 8
1211adantlr 714 . . . . . . 7
1312adantr 465 . . . . . 6
14 nfra1 2838 . . . . . . . . . . 11
15 nfv 1707 . . . . . . . . . . 11
1614, 15nfan 1928 . . . . . . . . . 10
17 nfv 1707 . . . . . . . . . 10
18 rsp 2823 . . . . . . . . . . 11
19 vex 3112 . . . . . . . . . . . . . . . . . 18
2019sucid 4962 . . . . . . . . . . . . . . . . 17
21 eleq2 2530 . . . . . . . . . . . . . . . . 17
2220, 21mpbiri 233 . . . . . . . . . . . . . . . 16
23 eleq1 2529 . . . . . . . . . . . . . . . . . 18
24 peano2b 6716 . . . . . . . . . . . . . . . . . 18
2523, 24syl6bbr 263 . . . . . . . . . . . . . . . . 17
26 minel 3882 . . . . . . . . . . . . . . . . . . 19
27 neldif 3628 . . . . . . . . . . . . . . . . . . 19
2826, 27sylan2 474 . . . . . . . . . . . . . . . . . 18
2928exp32 605 . . . . . . . . . . . . . . . . 17
3025, 29syl6bi 228 . . . . . . . . . . . . . . . 16
3122, 30mpid 41 . . . . . . . . . . . . . . 15
323, 31syl5 32 . . . . . . . . . . . . . 14
3332impd 431 . . . . . . . . . . . . 13
34 eleq1a 2540 . . . . . . . . . . . . . 14
3534com12 31 . . . . . . . . . . . . 13
3633, 35imim12d 74 . . . . . . . . . . . 12
3736com13 80 . . . . . . . . . . 11
3818, 37sylan9 657 . . . . . . . . . 10
3916, 17, 38rexlimd 2941 . . . . . . . . 9
4039exp32 605 . . . . . . . 8
4140a1i 11 . . . . . . 7
4241imp41 593 . . . . . 6
4313, 42mpd 15 . . . . 5
442, 43mtand 659 . . . 4
4544nrexdv 2913 . . 3
46 ordom 6709 . . . . 5
47 difss 3630 . . . . 5
48 tz7.5 4904 . . . . 5
4946, 47, 48mp3an12 1314 . . . 4
5049necon1bi 2690 . . 3
5145, 50syl 16 . 2
52 ssdif0 3885 . 2
5351, 52sylibr 212 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  /\wa 369  =wceq 1395  e.wcel 1818  =/=wne 2652  A.wral 2807  E.wrex 2808  \cdif 3472  i^icin 3474  C_wss 3475   c0 3784  Ordword 4882  succsuc 4885   com 6700
This theorem is referenced by:  find  6725  finds  6726  finds2  6728  omex  8081  dfom3  8085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691  ax-un 6592
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-pss 3491  df-nul 3785  df-if 3942  df-pw 4014  df-sn 4030  df-pr 4032  df-tp 4034  df-op 4036  df-uni 4250  df-br 4453  df-opab 4511  df-tr 4546  df-eprel 4796  df-po 4805  df-so 4806  df-fr 4843  df-we 4845  df-ord 4886  df-on 4887  df-lim 4888  df-suc 4889  df-om 6701
  Copyright terms: Public domain W3C validator