![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > pm110.643 | Unicode version |
Description: 1+1=2 for cardinal number addition, derived from pm54.43 8402 as promised. Theorem *110.643 of Principia Mathematica, vol. II, p. 86, which adds the remark, "The above proposition is occasionally useful." Whitehead and Russell define cardinal addition on collections of all sets equinumerous to 1 and 2 (which for us are proper classes unless we restrict them as in karden 8334), but after applying definitions, our theorem is equivalent. The comment for cdaval 8571 explains why we use instead of =. See pm110.643ALT 8579 for a shorter proof that doesn't use pm54.43 8402. (Contributed by NM, 5-Apr-2007.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
pm110.643 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1on 7156 | . . 3 | |
2 | cdaval 8571 | . . 3 | |
3 | 1, 1, 2 | mp2an 672 | . 2 |
4 | xp01disj 7165 | . . 3 | |
5 | 1 | elexi 3119 | . . . . 5 |
6 | 0ex 4582 | . . . . 5 | |
7 | 5, 6 | xpsnen 7621 | . . . 4 |
8 | 5, 5 | xpsnen 7621 | . . . 4 |
9 | pm54.43 8402 | . . . 4 | |
10 | 7, 8, 9 | mp2an 672 | . . 3 |
11 | 4, 10 | mpbi 208 | . 2 |
12 | 3, 11 | eqbrtri 4471 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 = wceq 1395
e. wcel 1818 u. cun 3473 i^i cin 3474
c0 3784 { csn 4029 class class class wbr 4452
con0 4883 X. cxp 5002 (class class class)co 6296
c1o 7142
c2o 7143
cen 7533 ccda 8568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1o 7149 df-2o 7150 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-cda 8569 |
Copyright terms: Public domain | W3C validator |