![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > pm2.01da | Unicode version |
Description: Deduction based on reductio ad absurdum. (Contributed by Mario Carneiro, 9-Feb-2017.) |
Ref | Expression |
---|---|
pm2.01da.1 |
Ref | Expression |
---|---|
pm2.01da |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.01da.1 | . . 3 | |
2 | 1 | ex 434 | . 2 |
3 | 2 | pm2.01d 169 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 |
This theorem is referenced by: efrirr 4865 omlimcl 7246 hartogslem1 7988 cfslb2n 8669 fin23lem41 8753 tskuni 9182 4sqlem18 14480 ramlb 14537 ivthlem2 21864 ivthlem3 21865 cosne0 22917 footne 24097 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |