MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.01da Unicode version

Theorem pm2.01da 442
Description: Deduction based on reductio ad absurdum. (Contributed by Mario Carneiro, 9-Feb-2017.)
Hypothesis
Ref Expression
pm2.01da.1
Assertion
Ref Expression
pm2.01da

Proof of Theorem pm2.01da
StepHypRef Expression
1 pm2.01da.1 . . 3
21ex 434 . 2
32pm2.01d 169 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  /\wa 369
This theorem is referenced by:  efrirr  4865  omlimcl  7246  hartogslem1  7988  cfslb2n  8669  fin23lem41  8753  tskuni  9182  4sqlem18  14480  ramlb  14537  ivthlem2  21864  ivthlem3  21865  cosne0  22917  footne  24097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371
  Copyright terms: Public domain W3C validator