![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > pm2.61d2 | Unicode version |
Description: Inference eliminating an antecedent. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
pm2.61d2.1 | |
pm2.61d2.2 |
Ref | Expression |
---|---|
pm2.61d2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61d2.2 | . . 3 | |
2 | 1 | a1i 11 | . 2 |
3 | pm2.61d2.1 | . 2 | |
4 | 2, 3 | pm2.61d 158 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4 |
This theorem is referenced by: pm2.61ii 165 jaoi 379 nfald2 2073 nfsbd 2186 2ax6elem 2193 sbal1 2204 sbal2 2205 nfabd2 2640 rgen2a 2884 relimasn 5365 nfriotad 6265 tfinds 6694 curry1val 6893 curry2val 6897 onfununi 7031 findcard2s 7781 xpfi 7811 fiint 7817 acndom 8453 dfac12k 8548 iundom2g 8936 axpowndlem3OLD 8997 nqereu 9328 ltapr 9444 xrmax1 11405 xrmin2 11408 max1ALT 11416 hasheq0 12433 swrdvalodm2 12664 swrdvalodm 12665 cshw1 12790 bezout 14180 ptbasfi 20082 filcon 20384 pcopt 21522 ioorinv 21985 itg1addlem2 22104 itg1addlem4 22106 itgss 22218 bddmulibl 22245 wlkdvspthlem 24609 mdsymlem6 27327 sumdmdlem2 27338 wl-equsb4 30005 wl-sbalnae 30012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
Copyright terms: Public domain | W3C validator |