MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.61iii Unicode version

Theorem pm2.61iii 167
Description: Inference eliminating three antecedents. (Contributed by NM, 2-Jan-2002.) (Proof shortened by Wolf Lammen, 22-Sep-2013.)
Hypotheses
Ref Expression
pm2.61iii.1
pm2.61iii.2
pm2.61iii.3
pm2.61iii.4
Assertion
Ref Expression
pm2.61iii

Proof of Theorem pm2.61iii
StepHypRef Expression
1 pm2.61iii.4 . 2
2 pm2.61iii.1 . . 3
3 pm2.61iii.2 . . . 4
43a1d 25 . . 3
5 pm2.61iii.3 . . . 4
65a1d 25 . . 3
72, 4, 6pm2.61ii 165 . 2
81, 7pm2.61i 164 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4
This theorem is referenced by:  axrepnd  8990  axacndlem4  9009  axacndlem5  9010  axacnd  9011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
  Copyright terms: Public domain W3C validator