![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > pm2.61ine | Unicode version |
Description: Inference eliminating an inequality in an antecedent. (Contributed by NM, 16-Jan-2007.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
Ref | Expression |
---|---|
pm2.61ine.1 | |
pm2.61ine.2 |
Ref | Expression |
---|---|
pm2.61ine |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm2.61ine.2 | . 2 | |
2 | nne 2658 | . . 3 | |
3 | pm2.61ine.1 | . . 3 | |
4 | 2, 3 | sylbi 195 | . 2 |
5 | 1, 4 | pm2.61i 164 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
= wceq 1395 =/= wne 2652 |
This theorem is referenced by: pm2.61ne 2772 pm2.61iine 2779 rgenz 3935 raaan 3937 raaanv 3938 iinrab2 4393 iinvdif 4402 riinrab 4406 reusv2lem2 4654 reusv6OLD 4663 reusv7OLD 4664 xpriindi 5144 dmxpid 5227 dmxpss 5443 rnxpid 5445 cnvpo 5550 xpcoid 5553 fnprb 6129 fconstfvOLD 6134 xpexr 6740 frxp 6910 suppimacnv 6929 fodomr 7688 wdompwdom 8025 en3lp 8054 inf3lemd 8065 prdom2 8405 iunfictbso 8516 infpssrlem4 8707 1re 9616 dedekindle 9766 00id 9776 nn0lt2 10952 nn01to3 11204 ioorebas 11655 fzfi 12082 ssnn0fi 12094 hash2prde 12516 repswsymballbi 12752 cshw0 12765 cshwmodn 12766 cshwsublen 12767 cshwn 12768 cshwlen 12770 cshwidx0 12776 cshwsidrepswmod0 14579 cshwshashlem1 14580 cshwshashlem2 14581 cshwsdisj 14583 cntzssv 16366 psgnunilem4 16522 mulmarep1gsum2 19076 plyssc 22597 axsegcon 24230 axpaschlem 24243 axlowdimlem16 24260 axcontlem7 24273 axcontlem8 24274 axcontlem12 24278 usgra2edg 24382 usgrcyclnl2 24641 4cycl4dv 24667 1to3vfriswmgra 25007 frgranbnb 25020 numclwwlk5 25112 siii 25768 h1de2ctlem 26473 riesz3i 26981 unierri 27023 dya2iocuni 28254 sibf0 28276 dfpo2 29184 cgrextend 29658 ifscgr 29694 idinside 29734 btwnconn1lem12 29748 btwnconn1 29751 linethru 29803 ovoliunnfl 30056 voliunnfl 30058 volsupnfl 30059 sdrgacs 31150 nrhmzr 32679 zlmodzxznm 33098 ax6e2ndeq 33332 bnj1143 33849 bnj571 33964 bnj594 33970 bnj852 33979 bj-xpnzex 34516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-ne 2654 |
Copyright terms: Public domain | W3C validator |