MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.61nii Unicode version

Theorem pm2.61nii 166
Description: Inference eliminating two antecedents. (Contributed by NM, 13-Jul-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 13-Nov-2012.)
Hypotheses
Ref Expression
pm2.61nii.1
pm2.61nii.2
pm2.61nii.3
Assertion
Ref Expression
pm2.61nii

Proof of Theorem pm2.61nii
StepHypRef Expression
1 pm2.61nii.1 . . 3
2 pm2.61nii.3 . . 3
31, 2pm2.61d1 159 . 2
4 pm2.61nii.2 . 2
53, 4pm2.61i 164 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4
This theorem is referenced by:  ecase  942  3ecase  1333  prex  4694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
  Copyright terms: Public domain W3C validator