MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.45im Unicode version

Theorem pm4.45im 562
Description: Conjunction with implication. Compare Theorem *4.45 of [WhiteheadRussell] p. 119. (Contributed by NM, 17-May-1998.)
Assertion
Ref Expression
pm4.45im

Proof of Theorem pm4.45im
StepHypRef Expression
1 ax-1 6 . . 3
21ancli 551 . 2
3 simpl 457 . 2
42, 3impbii 188 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369
This theorem is referenced by:  difdif  3629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371
  Copyright terms: Public domain W3C validator