MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.71r Unicode version

Theorem pm4.71r 631
Description: Implication in terms of biconditional and conjunction. Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 25-Jul-1999.)
Assertion
Ref Expression
pm4.71r

Proof of Theorem pm4.71r
StepHypRef Expression
1 pm4.71 630 . 2
2 ancom 450 . . 3
32bibi2i 313 . 2
41, 3bitri 249 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369
This theorem is referenced by:  pm4.71ri  633  pm4.71rd  635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371
  Copyright terms: Public domain W3C validator