MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.17 Unicode version

Theorem pm5.17 888
Description: Theorem *5.17 of [WhiteheadRussell] p. 124. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 3-Jan-2013.)
Assertion
Ref Expression
pm5.17

Proof of Theorem pm5.17
StepHypRef Expression
1 bicom 200 . 2
2 dfbi2 628 . 2
3 orcom 387 . . . 4
4 df-or 370 . . . 4
53, 4bitr2i 250 . . 3
6 imnan 422 . . 3
75, 6anbi12i 697 . 2
81, 2, 73bitrri 272 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  <->wb 184  \/wo 368  /\wa 369
This theorem is referenced by:  nbi2  892  odd2np1  14046  ordtconlem1  27906  sgnneg  28479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371
  Copyright terms: Public domain W3C validator