![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > pm5.21nd | Unicode version |
Description: Eliminate an antecedent implied by each side of a biconditional. (Contributed by NM, 20-Nov-2005.) (Proof shortened by Wolf Lammen, 4-Nov-2013.) |
Ref | Expression |
---|---|
pm5.21nd.1 | |
pm5.21nd.2 | |
pm5.21nd.3 |
Ref | Expression |
---|---|
pm5.21nd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.21nd.1 | . . 3 | |
2 | 1 | ex 434 | . 2 |
3 | pm5.21nd.2 | . . 3 | |
4 | 3 | ex 434 | . 2 |
5 | pm5.21nd.3 | . . 3 | |
6 | 5 | a1i 11 | . 2 |
7 | 2, 4, 6 | pm5.21ndd 354 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 |
This theorem is referenced by: ideqg 5159 fvelimab 5929 brrpssg 6582 ordsucelsuc 6657 releldm2 6850 relbrtpos 6985 relelec 7371 elfiun 7910 fpwwe2lem2 9031 fpwwelem 9044 fzrev3 11774 elfzp12 11786 eqgval 16250 eltg 19458 eltg2 19459 cncnp2 19782 isref 20010 islocfin 20018 isdivrngo 25433 opeldifid 27456 isfne 30157 opelopab3 30207 islshpkrN 34845 dihatexv2 37066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-an 371 |
Copyright terms: Public domain | W3C validator |