![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > pmvalg | Unicode version |
Description: The value of the partial mapping operation. is the set of all partial functions that map from to . (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
pmvalg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3584 | . . 3 | |
2 | xpexg 6602 | . . . . 5 | |
3 | 2 | ancoms 453 | . . . 4 |
4 | pwexg 4636 | . . . 4 | |
5 | 3, 4 | syl 16 | . . 3 |
6 | ssexg 4598 | . . 3 | |
7 | 1, 5, 6 | sylancr 663 | . 2 |
8 | elex 3118 | . . 3 | |
9 | elex 3118 | . . 3 | |
10 | xpeq2 5019 | . . . . . . 7 | |
11 | 10 | pweqd 4017 | . . . . . 6 |
12 | rabeq 3103 | . . . . . 6 | |
13 | 11, 12 | syl 16 | . . . . 5 |
14 | xpeq1 5018 | . . . . . . 7 | |
15 | 14 | pweqd 4017 | . . . . . 6 |
16 | rabeq 3103 | . . . . . 6 | |
17 | 15, 16 | syl 16 | . . . . 5 |
18 | df-pm 7442 | . . . . 5 | |
19 | 13, 17, 18 | ovmpt2g 6437 | . . . 4 |
20 | 19 | 3expia 1198 | . . 3 |
21 | 8, 9, 20 | syl2an 477 | . 2 |
22 | 7, 21 | mpd 15 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 { crab 2811
cvv 3109
C_ wss 3475 ~P cpw 4012 X. cxp 5002
Fun wfun 5587
(class class class)co 6296 cpm 7440 |
This theorem is referenced by: elpmg 7454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-iota 5556 df-fun 5595 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-pm 7442 |
Copyright terms: Public domain | W3C validator |