![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > poinxp | Unicode version |
Description: Intersection of partial order with Cartesian product of its field. (Contributed by Mario Carneiro, 10-Jul-2014.) |
Ref | Expression |
---|---|
poinxp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 753 | . . . . . . . 8 | |
2 | brinxp 5067 | . . . . . . . 8 | |
3 | 1, 1, 2 | syl2anc 661 | . . . . . . 7 |
4 | 3 | notbid 294 | . . . . . 6 |
5 | brinxp 5067 | . . . . . . . . 9 | |
6 | 5 | adantr 465 | . . . . . . . 8 |
7 | brinxp 5067 | . . . . . . . . 9 | |
8 | 7 | adantll 713 | . . . . . . . 8 |
9 | 6, 8 | anbi12d 710 | . . . . . . 7 |
10 | brinxp 5067 | . . . . . . . 8 | |
11 | 10 | adantlr 714 | . . . . . . 7 |
12 | 9, 11 | imbi12d 320 | . . . . . 6 |
13 | 4, 12 | anbi12d 710 | . . . . 5 |
14 | 13 | ralbidva 2893 | . . . 4 |
15 | 14 | ralbidva 2893 | . . 3 |
16 | 15 | ralbiia 2887 | . 2 |
17 | df-po 4805 | . 2 | |
18 | df-po 4805 | . 2 | |
19 | 16, 17, 18 | 3bitr4i 277 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 e. wcel 1818
A. wral 2807 i^i cin 3474 class class class wbr 4452
Po wpo 4803 X. cxp 5002 |
This theorem is referenced by: soinxp 5069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-po 4805 df-xp 5010 |
Copyright terms: Public domain | W3C validator |