![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > prcdnq | Unicode version |
Description: A positive real is closed downwards under the positive fractions. Definition 9-3.1 (ii) of [Gleason] p. 121. (Contributed by NM, 25-Feb-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
prcdnq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelnq 9325 | . . . . . . 7 | |
2 | relxp 5115 | . . . . . . 7 | |
3 | relss 5095 | . . . . . . 7 | |
4 | 1, 2, 3 | mp2 9 | . . . . . 6 |
5 | 4 | brrelexi 5045 | . . . . 5 |
6 | eleq1 2529 | . . . . . . . . 9 | |
7 | 6 | anbi2d 703 | . . . . . . . 8 |
8 | breq2 4456 | . . . . . . . 8 | |
9 | 7, 8 | anbi12d 710 | . . . . . . 7 |
10 | 9 | imbi1d 317 | . . . . . 6 |
11 | breq1 4455 | . . . . . . . 8 | |
12 | 11 | anbi2d 703 | . . . . . . 7 |
13 | eleq1 2529 | . . . . . . 7 | |
14 | 12, 13 | imbi12d 320 | . . . . . 6 |
15 | elnpi 9387 | . . . . . . . . . . 11 | |
16 | 15 | simprbi 464 | . . . . . . . . . 10 |
17 | 16 | r19.21bi 2826 | . . . . . . . . 9 |
18 | 17 | simpld 459 | . . . . . . . 8 |
19 | 18 | 19.21bi 1869 | . . . . . . 7 |
20 | 19 | imp 429 | . . . . . 6 |
21 | 10, 14, 20 | vtocl2g 3171 | . . . . 5 |
22 | 5, 21 | sylan2 474 | . . . 4 |
23 | 22 | adantll 713 | . . 3 |
24 | 23 | pm2.43i 47 | . 2 |
25 | 24 | ex 434 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 A. wal 1393 = wceq 1395
e. wcel 1818 A. wral 2807 E. wrex 2808
cvv 3109
C_ wss 3475 C. wpss 3476 c0 3784 class class class wbr 4452
X. cxp 5002 Rel wrel 5009 cnq 9251
cltq 9257
cnp 9258 |
This theorem is referenced by: prub 9393 addclprlem1 9415 mulclprlem 9418 distrlem4pr 9425 1idpr 9428 psslinpr 9430 prlem934 9432 ltaddpr 9433 ltexprlem2 9436 ltexprlem3 9437 ltexprlem6 9440 prlem936 9446 reclem2pr 9447 suplem1pr 9451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-xp 5010 df-rel 5011 df-ltnq 9317 df-np 9380 |
Copyright terms: Public domain | W3C validator |