Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  predasetex Unicode version

Theorem predasetex 28097
Description: The predecessor class exists when does. (Contributed by Scott Fenton, 8-Feb-2011.)
Hypothesis
Ref Expression
predasetex.1
Assertion
Ref Expression
predasetex

Proof of Theorem predasetex
StepHypRef Expression
1 df-pred 28081 . 2
2 predasetex.1 . . 3
32inex1 4550 . 2
41, 3eqeltri 2538 1
Colors of variables: wff setvar class
Syntax hints:  e.wcel 1758   cvv 3081  i^icin 3441  {csn 3993  `'ccnv 4956  "cima 4960  Predcpred 28080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4530
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-v 3083  df-in 3449  df-pred 28081
  Copyright terms: Public domain W3C validator