![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > prel12 | Unicode version |
Description: Equality of two unordered pairs. (Contributed by NM, 17-Oct-1996.) |
Ref | Expression |
---|---|
preq12b.1 | |
preq12b.2 | |
preq12b.3 | |
preq12b.4 |
Ref | Expression |
---|---|
prel12 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq12b.1 | . . . . 5 | |
2 | 1 | prid1 4138 | . . . 4 |
3 | eleq2 2530 | . . . 4 | |
4 | 2, 3 | mpbii 211 | . . 3 |
5 | preq12b.2 | . . . . 5 | |
6 | 5 | prid2 4139 | . . . 4 |
7 | eleq2 2530 | . . . 4 | |
8 | 6, 7 | mpbii 211 | . . 3 |
9 | 4, 8 | jca 532 | . 2 |
10 | 1 | elpr 4047 | . . . 4 |
11 | eqeq2 2472 | . . . . . . . . . . . 12 | |
12 | 11 | notbid 294 | . . . . . . . . . . 11 |
13 | orel2 383 | . . . . . . . . . . 11 | |
14 | 12, 13 | syl6bi 228 | . . . . . . . . . 10 |
15 | 14 | com3l 81 | . . . . . . . . 9 |
16 | 15 | imp 429 | . . . . . . . 8 |
17 | 16 | ancrd 554 | . . . . . . 7 |
18 | eqeq2 2472 | . . . . . . . . . . . 12 | |
19 | 18 | notbid 294 | . . . . . . . . . . 11 |
20 | orel1 382 | . . . . . . . . . . 11 | |
21 | 19, 20 | syl6bi 228 | . . . . . . . . . 10 |
22 | 21 | com3l 81 | . . . . . . . . 9 |
23 | 22 | imp 429 | . . . . . . . 8 |
24 | 23 | ancrd 554 | . . . . . . 7 |
25 | 17, 24 | orim12d 838 | . . . . . 6 |
26 | 5 | elpr 4047 | . . . . . . 7 |
27 | orcom 387 | . . . . . . 7 | |
28 | 26, 27 | bitri 249 | . . . . . 6 |
29 | preq12b.3 | . . . . . . 7 | |
30 | preq12b.4 | . . . . . . 7 | |
31 | 1, 5, 29, 30 | preq12b 4206 | . . . . . 6 |
32 | 25, 28, 31 | 3imtr4g 270 | . . . . 5 |
33 | 32 | ex 434 | . . . 4 |
34 | 10, 33 | syl5bi 217 | . . 3 |
35 | 34 | impd 431 | . 2 |
36 | 9, 35 | impbid2 204 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
= wceq 1395 e. wcel 1818 cvv 3109
{ cpr 4031 |
This theorem is referenced by: prel12g 4210 dfac2 8532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-un 3480 df-sn 4030 df-pr 4032 |
Copyright terms: Public domain | W3C validator |