MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preq12b Unicode version

Theorem preq12b 4206
Description: Equality relationship for two unordered pairs. (Contributed by NM, 17-Oct-1996.)
Hypotheses
Ref Expression
preq12b.1
preq12b.2
preq12b.3
preq12b.4
Assertion
Ref Expression
preq12b

Proof of Theorem preq12b
StepHypRef Expression
1 preq12b.1 . . . . . 6
21prid1 4138 . . . . 5
3 eleq2 2530 . . . . 5
42, 3mpbii 211 . . . 4
51elpr 4047 . . . 4
64, 5sylib 196 . . 3
7 preq1 4109 . . . . . . . 8
87eqeq1d 2459 . . . . . . 7
9 preq12b.2 . . . . . . . 8
10 preq12b.4 . . . . . . . 8
119, 10preqr2 4205 . . . . . . 7
128, 11syl6bi 228 . . . . . 6
1312com12 31 . . . . 5
1413ancld 553 . . . 4
15 prcom 4108 . . . . . . 7
1615eqeq2i 2475 . . . . . 6
17 preq1 4109 . . . . . . . . 9
1817eqeq1d 2459 . . . . . . . 8
19 preq12b.3 . . . . . . . . 9
209, 19preqr2 4205 . . . . . . . 8
2118, 20syl6bi 228 . . . . . . 7
2221com12 31 . . . . . 6
2316, 22sylbi 195 . . . . 5
2423ancld 553 . . . 4
2514, 24orim12d 838 . . 3
266, 25mpd 15 . 2
27 preq12 4111 . . 3
28 prcom 4108 . . . . 5
2917, 28syl6eq 2514 . . . 4
30 preq1 4109 . . . 4
3129, 30sylan9eq 2518 . . 3
3227, 31jaoi 379 . 2
3326, 32impbii 188 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  \/wo 368  /\wa 369  =wceq 1395  e.wcel 1818   cvv 3109  {cpr 4031
This theorem is referenced by:  prel12  4207  opthpr  4208  preq12bg  4209  preqsn  4213  opeqpr  4749  preleq  8055  axlowdimlem13  24257  wlkdvspthlem  24609  altopthsn  29611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111  df-un 3480  df-sn 4030  df-pr 4032
  Copyright terms: Public domain W3C validator