![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > preq12b | Unicode version |
Description: Equality relationship for two unordered pairs. (Contributed by NM, 17-Oct-1996.) |
Ref | Expression |
---|---|
preq12b.1 | |
preq12b.2 | |
preq12b.3 | |
preq12b.4 |
Ref | Expression |
---|---|
preq12b |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq12b.1 | . . . . . 6 | |
2 | 1 | prid1 4138 | . . . . 5 |
3 | eleq2 2530 | . . . . 5 | |
4 | 2, 3 | mpbii 211 | . . . 4 |
5 | 1 | elpr 4047 | . . . 4 |
6 | 4, 5 | sylib 196 | . . 3 |
7 | preq1 4109 | . . . . . . . 8 | |
8 | 7 | eqeq1d 2459 | . . . . . . 7 |
9 | preq12b.2 | . . . . . . . 8 | |
10 | preq12b.4 | . . . . . . . 8 | |
11 | 9, 10 | preqr2 4205 | . . . . . . 7 |
12 | 8, 11 | syl6bi 228 | . . . . . 6 |
13 | 12 | com12 31 | . . . . 5 |
14 | 13 | ancld 553 | . . . 4 |
15 | prcom 4108 | . . . . . . 7 | |
16 | 15 | eqeq2i 2475 | . . . . . 6 |
17 | preq1 4109 | . . . . . . . . 9 | |
18 | 17 | eqeq1d 2459 | . . . . . . . 8 |
19 | preq12b.3 | . . . . . . . . 9 | |
20 | 9, 19 | preqr2 4205 | . . . . . . . 8 |
21 | 18, 20 | syl6bi 228 | . . . . . . 7 |
22 | 21 | com12 31 | . . . . . 6 |
23 | 16, 22 | sylbi 195 | . . . . 5 |
24 | 23 | ancld 553 | . . . 4 |
25 | 14, 24 | orim12d 838 | . . 3 |
26 | 6, 25 | mpd 15 | . 2 |
27 | preq12 4111 | . . 3 | |
28 | prcom 4108 | . . . . 5 | |
29 | 17, 28 | syl6eq 2514 | . . . 4 |
30 | preq1 4109 | . . . 4 | |
31 | 29, 30 | sylan9eq 2518 | . . 3 |
32 | 27, 31 | jaoi 379 | . 2 |
33 | 26, 32 | impbii 188 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
\/ wo 368 /\ wa 369 = wceq 1395
e. wcel 1818 cvv 3109
{ cpr 4031 |
This theorem is referenced by: prel12 4207 opthpr 4208 preq12bg 4209 preqsn 4213 opeqpr 4749 preleq 8055 axlowdimlem13 24257 wlkdvspthlem 24609 altopthsn 29611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-un 3480 df-sn 4030 df-pr 4032 |
Copyright terms: Public domain | W3C validator |