![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > preqsn | Unicode version |
Description: Equivalence for a pair equal to a singleton. (Contributed by NM, 3-Jun-2008.) |
Ref | Expression |
---|---|
preqsn.1 | |
preqsn.2 | |
preqsn.3 |
Ref | Expression |
---|---|
preqsn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 4042 | . . 3 | |
2 | 1 | eqeq2i 2475 | . 2 |
3 | preqsn.1 | . . . 4 | |
4 | preqsn.2 | . . . 4 | |
5 | preqsn.3 | . . . 4 | |
6 | 3, 4, 5, 5 | preq12b 4206 | . . 3 |
7 | oridm 514 | . . . 4 | |
8 | eqtr3 2485 | . . . . . 6 | |
9 | simpr 461 | . . . . . 6 | |
10 | 8, 9 | jca 532 | . . . . 5 |
11 | eqtr 2483 | . . . . . 6 | |
12 | simpr 461 | . . . . . 6 | |
13 | 11, 12 | jca 532 | . . . . 5 |
14 | 10, 13 | impbii 188 | . . . 4 |
15 | 7, 14 | bitri 249 | . . 3 |
16 | 6, 15 | bitri 249 | . 2 |
17 | 2, 16 | bitri 249 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 \/ wo 368
/\ wa 369 = wceq 1395 e. wcel 1818
cvv 3109
{ csn 4029 { cpr 4031 |
This theorem is referenced by: opeqsn 4748 relop 5158 hash2prde 12516 symg2bas 16423 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-un 3480 df-sn 4030 df-pr 4032 |
Copyright terms: Public domain | W3C validator |