MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prlem2 Unicode version

Theorem prlem2 963
Description: A specialized lemma for set theory (to derive the Axiom of Pairing). (Contributed by NM, 21-Jun-1993.) (Proof shortened by Andrew Salmon, 13-May-2011.) (Proof shortened by Wolf Lammen, 9-Dec-2012.)
Assertion
Ref Expression
prlem2

Proof of Theorem prlem2
StepHypRef Expression
1 simpl 457 . . 3
2 simpl 457 . . 3
31, 2orim12i 516 . 2
43pm4.71ri 633 1
Colors of variables: wff setvar class
Syntax hints:  <->wb 184  \/wo 368  /\wa 369
This theorem is referenced by:  zfpair  4689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371
  Copyright terms: Public domain W3C validator