![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > prmrec | Unicode version |
Description: The sum of the reciprocals of the primes diverges. This is the "second" proof at http://en.wikipedia.org/wiki/Prime_harmonic_series, attributed to Paul Erdős. This is Metamath 100 proof #81. (Contributed by Mario Carneiro, 6-Aug-2014.) |
Ref | Expression |
---|---|
prmrec.f |
Ref | Expression |
---|---|
prmrec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2529 | . . . . 5 | |
2 | oveq2 6304 | . . . . 5 | |
3 | 1, 2 | ifbieq1d 3964 | . . . 4 |
4 | 3 | cbvmptv 4543 | . . 3 |
5 | 4 | prmreclem6 14439 | . 2 |
6 | inss2 3718 | . . . . . . . . 9 | |
7 | 6 | sseli 3499 | . . . . . . . . . . 11 |
8 | elfznn 11743 | . . . . . . . . . . 11 | |
9 | nnrecre 10597 | . . . . . . . . . . . 12 | |
10 | 9 | recnd 9643 | . . . . . . . . . . 11 |
11 | 7, 8, 10 | 3syl 20 | . . . . . . . . . 10 |
12 | 11 | rgen 2817 | . . . . . . . . 9 |
13 | 6, 12 | pm3.2i 455 | . . . . . . . 8 |
14 | fzfi 12082 | . . . . . . . . 9 | |
15 | 14 | olci 391 | . . . . . . . 8 |
16 | sumss2 13548 | . . . . . . . 8 | |
17 | 13, 15, 16 | mp2an 672 | . . . . . . 7 |
18 | elin 3686 | . . . . . . . . . 10 | |
19 | 18 | rbaib 906 | . . . . . . . . 9 |
20 | 19 | ifbid 3963 | . . . . . . . 8 |
21 | 20 | sumeq2i 13521 | . . . . . . 7 |
22 | 17, 21 | eqtri 2486 | . . . . . 6 |
23 | 8 | adantl 466 | . . . . . . . 8 |
24 | prmnn 14220 | . . . . . . . . . . . 12 | |
25 | 24, 10 | syl 16 | . . . . . . . . . . 11 |
26 | 25 | adantl 466 | . . . . . . . . . 10 |
27 | 0cnd 9610 | . . . . . . . . . 10 | |
28 | 26, 27 | ifclda 3973 | . . . . . . . . 9 |
29 | 28 | trud 1404 | . . . . . . . 8 |
30 | 4 | fvmpt2 5963 | . . . . . . . 8 |
31 | 23, 29, 30 | sylancl 662 | . . . . . . 7 |
32 | id 22 | . . . . . . . 8 | |
33 | nnuz 11145 | . . . . . . . 8 | |
34 | 32, 33 | syl6eleq 2555 | . . . . . . 7 |
35 | 29 | a1i 11 | . . . . . . 7 |
36 | 31, 34, 35 | fsumser 13552 | . . . . . 6 |
37 | 22, 36 | syl5eq 2510 | . . . . 5 |
38 | 37 | mpteq2ia 4534 | . . . 4 |
39 | prmrec.f | . . . 4 | |
40 | 1z 10919 | . . . . . . 7 | |
41 | seqfn 12119 | . . . . . . 7 | |
42 | 40, 41 | ax-mp 5 | . . . . . 6 |
43 | 33 | fneq2i 5681 | . . . . . 6 |
44 | 42, 43 | mpbir 209 | . . . . 5 |
45 | dffn5 5918 | . . . . 5 | |
46 | 44, 45 | mpbi 208 | . . . 4 |
47 | 38, 39, 46 | 3eqtr4i 2496 | . . 3 |
48 | 47 | eleq1i 2534 | . 2 |
49 | 5, 48 | mtbir 299 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 \/ wo 368
/\ wa 369 = wceq 1395 wtru 1396 e. wcel 1818 A. wral 2807
i^i cin 3474 C_ wss 3475 if cif 3941
e. cmpt 4510 dom cdm 5004 Fn wfn 5588
` cfv 5593 (class class class)co 6296
cfn 7536 cc 9511 0 cc0 9513 1 c1 9514
caddc 9516 cdiv 10231 cn 10561 cz 10889 cuz 11110
cfz 11701 seq cseq 12107 cli 13307 sum_ csu 13508 cprime 14217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-2o 7150 df-oadd 7153 df-er 7330 df-map 7441 df-pm 7442 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-sup 7921 df-oi 7956 df-card 8341 df-cda 8569 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-q 11212 df-rp 11250 df-fz 11702 df-fzo 11825 df-fl 11929 df-mod 11997 df-seq 12108 df-exp 12167 df-hash 12406 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-clim 13311 df-rlim 13312 df-sum 13509 df-dvds 13987 df-gcd 14145 df-prm 14218 df-pc 14361 |
Copyright terms: Public domain | W3C validator |