![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > prmreclem1 | Unicode version |
Description: Lemma for prmrec 14440. Properties of the "square part"
function, which
extracts the of the decomposition N = 2 , with
maximal and squarefree. (Contributed
by Mario Carneiro,
5-Aug-2014.) |
Ref | Expression |
---|---|
prmreclem1.1 |
Ref | Expression |
---|---|
prmreclem1 |
N
Q
,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3584 | . . 3 | |
2 | breq2 4456 | . . . . . . 7 | |
3 | 2 | rabbidv 3101 | . . . . . 6 |
4 | 3 | supeq1d 7926 | . . . . 5 |
5 | prmreclem1.1 | . . . . 5 | |
6 | ltso 9686 | . . . . . 6 | |
7 | 6 | supex 7943 | . . . . 5 |
8 | 4, 5, 7 | fvmpt 5956 | . . . 4 |
9 | nnssz 10909 | . . . . . . 7 | |
10 | 1, 9 | sstri 3512 | . . . . . 6 |
11 | 10 | a1i 11 | . . . . 5 |
12 | 1nn 10572 | . . . . . . . 8 | |
13 | 12 | a1i 11 | . . . . . . 7 |
14 | nnz 10911 | . . . . . . . 8 | |
15 | 1dvds 13998 | . . . . . . . 8 | |
16 | 14, 15 | syl 16 | . . . . . . 7 |
17 | oveq1 6303 | . . . . . . . . . 10 | |
18 | sq1 12262 | . . . . . . . . . 10 | |
19 | 17, 18 | syl6eq 2514 | . . . . . . . . 9 |
20 | 19 | breq1d 4462 | . . . . . . . 8 |
21 | 20 | elrab 3257 | . . . . . . 7 |
22 | 13, 16, 21 | sylanbrc 664 | . . . . . 6 |
23 | ne0i 3790 | . . . . . 6 | |
24 | 22, 23 | syl 16 | . . . . 5 |
25 | nnz 10911 | . . . . . . . . . . 11 | |
26 | zsqcl 12238 | . . . . . . . . . . 11 | |
27 | 25, 26 | syl 16 | . . . . . . . . . 10 |
28 | id 22 | . . . . . . . . . 10 | |
29 | dvdsle 14031 | . . . . . . . . . 10 | |
30 | 27, 28, 29 | syl2anr 478 | . . . . . . . . 9 |
31 | nnlesq 12271 | . . . . . . . . . . 11 | |
32 | 31 | adantl 466 | . . . . . . . . . 10 |
33 | nnre 10568 | . . . . . . . . . . . 12 | |
34 | 33 | adantl 466 | . . . . . . . . . . 11 |
35 | 34 | resqcld 12336 | . . . . . . . . . . 11 |
36 | nnre 10568 | . . . . . . . . . . . 12 | |
37 | 36 | adantr 465 | . . . . . . . . . . 11 |
38 | letr 9699 | . . . . . . . . . . 11 | |
39 | 34, 35, 37, 38 | syl3anc 1228 | . . . . . . . . . 10 |
40 | 32, 39 | mpand 675 | . . . . . . . . 9 |
41 | 30, 40 | syld 44 | . . . . . . . 8 |
42 | 41 | ralrimiva 2871 | . . . . . . 7 |
43 | oveq1 6303 | . . . . . . . . 9 | |
44 | 43 | breq1d 4462 | . . . . . . . 8 |
45 | 44 | ralrab 3261 | . . . . . . 7 |
46 | 42, 45 | sylibr 212 | . . . . . 6 |
47 | breq2 4456 | . . . . . . . 8 | |
48 | 47 | ralbidv 2896 | . . . . . . 7 |
49 | 48 | rspcev 3210 | . . . . . 6 |
50 | 14, 46, 49 | syl2anc 661 | . . . . 5 |
51 | suprzcl2 11201 | . . . . 5 | |
52 | 11, 24, 50, 51 | syl3anc 1228 | . . . 4 |
53 | 8, 52 | eqeltrd 2545 | . . 3 |
54 | 1, 53 | sseldi 3501 | . 2 |
55 | oveq1 6303 | . . . . . 6 | |
56 | 55 | breq1d 4462 | . . . . 5 |
57 | 44 | cbvrabv 3108 | . . . . 5 |
58 | 56, 57 | elrab2 3259 | . . . 4 |
59 | 53, 58 | sylib 196 | . . 3 |
60 | 59 | simprd 463 | . 2 |
61 | 54 | adantr 465 | . . . . . . . 8 |
62 | 61 | nncnd 10577 | . . . . . . 7 |
63 | 62 | mulid1d 9634 | . . . . . 6 |
64 | eluz2b2 11183 | . . . . . . . . 9 | |
65 | 64 | simprbi 464 | . . . . . . . 8 |
66 | 65 | adantl 466 | . . . . . . 7 |
67 | 1red 9632 | . . . . . . . 8 | |
68 | eluz2nn 11148 | . . . . . . . . . 10 | |
69 | 68 | adantl 466 | . . . . . . . . 9 |
70 | 69 | nnred 10576 | . . . . . . . 8 |
71 | 61 | nnred 10576 | . . . . . . . 8 |
72 | 61 | nngt0d 10604 | . . . . . . . 8 |
73 | ltmul2 10418 | . . . . . . . 8 | |
74 | 67, 70, 71, 72, 73 | syl112anc 1232 | . . . . . . 7 |
75 | 66, 74 | mpbid 210 | . . . . . 6 |
76 | 63, 75 | eqbrtrrd 4474 | . . . . 5 |
77 | nnmulcl 10584 | . . . . . . . 8 | |
78 | 54, 68, 77 | syl2an 477 | . . . . . . 7 |
79 | 78 | nnred 10576 | . . . . . 6 |
80 | 71, 79 | ltnled 9753 | . . . . 5 |
81 | 76, 80 | mpbid 210 | . . . 4 |
82 | 10 | a1i 11 | . . . . . 6 |
83 | 50 | ad2antrr 725 | . . . . . 6 |
84 | 78 | adantr 465 | . . . . . . 7 |
85 | simpr 461 | . . . . . . . . 9 | |
86 | 69 | adantr 465 | . . . . . . . . . . . 12 |
87 | 86 | nnsqcld 12330 | . . . . . . . . . . 11 |
88 | nnz 10911 | . . . . . . . . . . 11 | |
89 | 87, 88 | syl 16 | . . . . . . . . . 10 |
90 | 54 | nnsqcld 12330 | . . . . . . . . . . . . . 14 |
91 | 9, 90 | sseldi 3501 | . . . . . . . . . . . . 13 |
92 | 90 | nnne0d 10605 | . . . . . . . . . . . . 13 |
93 | dvdsval2 13989 | . . . . . . . . . . . . 13 | |
94 | 91, 92, 14, 93 | syl3anc 1228 | . . . . . . . . . . . 12 |
95 | 60, 94 | mpbid 210 | . . . . . . . . . . 11 |
96 | 95 | ad2antrr 725 | . . . . . . . . . 10 |
97 | 91 | ad2antrr 725 | . . . . . . . . . 10 |
98 | dvdscmul 14010 | . . . . . . . . . 10 | |
99 | 89, 96, 97, 98 | syl3anc 1228 | . . . . . . . . 9 |
100 | 85, 99 | mpd 15 | . . . . . . . 8 |
101 | 62 | adantr 465 | . . . . . . . . . 10 |
102 | 86 | nncnd 10577 | . . . . . . . . . 10 |
103 | 101, 102 | sqmuld 12322 | . . . . . . . . 9 |
104 | 103 | eqcomd 2465 | . . . . . . . 8 |
105 | nncn 10569 | . . . . . . . . . 10 | |
106 | 105 | ad2antrr 725 | . . . . . . . . 9 |
107 | 90 | ad2antrr 725 | . . . . . . . . . 10 |
108 | 107 | nncnd 10577 | . . . . . . . . 9 |
109 | 92 | ad2antrr 725 | . . . . . . . . 9 |
110 | 106, 108, 109 | divcan2d 10347 | . . . . . . . 8 |
111 | 100, 104, 110 | 3brtr3d 4481 | . . . . . . 7 |
112 | oveq1 6303 | . . . . . . . . 9 | |
113 | 112 | breq1d 4462 | . . . . . . . 8 |
114 | 113 | elrab 3257 | . . . . . . 7 |
115 | 84, 111, 114 | sylanbrc 664 | . . . . . 6 |
116 | suprzub 11202 | . . . . . 6 | |
117 | 82, 83, 115, 116 | syl3anc 1228 | . . . . 5 |
118 | 8 | ad2antrr 725 | . . . . 5 |
119 | 117, 118 | breqtrrd 4478 | . . . 4 |
120 | 81, 119 | mtand 659 | . . 3 |
121 | 120 | ex 434 | . 2 |
122 | 54, 60, 121 | 3jca 1176 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 /\ w3a 973
= wceq 1395 e. wcel 1818 =/= wne 2652
A. wral 2807 E. wrex 2808 { crab 2811
C_ wss 3475 c0 3784 class class class wbr 4452
e. cmpt 4510 ` cfv 5593 (class class class)co 6296
sup csup 7920
cc 9511 cr 9512 0 cc0 9513 1 c1 9514
cmul 9518 clt 9649 cle 9650 cdiv 10231 cn 10561 2 c2 10610 cz 10889 cuz 11110
cexp 12166 cdvds 13986 |
This theorem is referenced by: prmreclem2 14435 prmreclem3 14436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-sup 7921 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-n0 10821 df-z 10890 df-uz 11111 df-seq 12108 df-exp 12167 df-dvds 13987 |
Copyright terms: Public domain | W3C validator |