![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > prnebg | Unicode version |
Description: A (proper) pair is not equal to another (maybe inproper) pair if and only if an element of the first pair is not contained in the second pair. (Contributed by Alexander van der Vekens, 16-Jan-2018.) |
Ref | Expression |
---|---|
prnebg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prneimg 4211 | . . 3 | |
2 | 1 | 3adant3 1016 | . 2 |
3 | ioran 490 | . . . . 5 | |
4 | ianor 488 | . . . . . . 7 | |
5 | nne 2658 | . . . . . . . 8 | |
6 | nne 2658 | . . . . . . . 8 | |
7 | 5, 6 | orbi12i 521 | . . . . . . 7 |
8 | 4, 7 | bitri 249 | . . . . . 6 |
9 | ianor 488 | . . . . . . 7 | |
10 | nne 2658 | . . . . . . . 8 | |
11 | nne 2658 | . . . . . . . 8 | |
12 | 10, 11 | orbi12i 521 | . . . . . . 7 |
13 | 9, 12 | bitri 249 | . . . . . 6 |
14 | 8, 13 | anbi12i 697 | . . . . 5 |
15 | 3, 14 | bitri 249 | . . . 4 |
16 | anddi 870 | . . . . 5 | |
17 | eqtr3 2485 | . . . . . . . . . 10 | |
18 | eqneqall 2664 | . . . . . . . . . 10 | |
19 | 17, 18 | syl 16 | . . . . . . . . 9 |
20 | preq12 4111 | . . . . . . . . . 10 | |
21 | 20 | a1d 25 | . . . . . . . . 9 |
22 | 19, 21 | jaoi 379 | . . . . . . . 8 |
23 | preq12 4111 | . . . . . . . . . . 11 | |
24 | prcom 4108 | . . . . . . . . . . 11 | |
25 | 23, 24 | syl6eq 2514 | . . . . . . . . . 10 |
26 | 25 | a1d 25 | . . . . . . . . 9 |
27 | eqtr3 2485 | . . . . . . . . . 10 | |
28 | 27, 18 | syl 16 | . . . . . . . . 9 |
29 | 26, 28 | jaoi 379 | . . . . . . . 8 |
30 | 22, 29 | jaoi 379 | . . . . . . 7 |
31 | 30 | com12 31 | . . . . . 6 |
32 | 31 | 3ad2ant3 1019 | . . . . 5 |
33 | 16, 32 | syl5bi 217 | . . . 4 |
34 | 15, 33 | syl5bi 217 | . . 3 |
35 | 34 | necon1ad 2673 | . 2 |
36 | 2, 35 | impbid 191 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
=/= wne 2652 { cpr 4031 |
This theorem is referenced by: zlmodzxznm 33098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-v 3111 df-un 3480 df-sn 4030 df-pr 4032 |
Copyright terms: Public domain | W3C validator |