MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prneimg Unicode version

Theorem prneimg 4211
Description: Two pairs are not equal if at least one element of the first pair is not contained in the second pair. (Contributed by Alexander van der Vekens, 13-Aug-2017.)
Assertion
Ref Expression
prneimg

Proof of Theorem prneimg
StepHypRef Expression
1 preq12bg 4209 . . . . 5
2 orddi 869 . . . . . 6
3 simpll 753 . . . . . . 7
4 pm1.4 386 . . . . . . . 8
54ad2antll 728 . . . . . . 7
63, 5jca 532 . . . . . 6
72, 6sylbi 195 . . . . 5
81, 7syl6bi 228 . . . 4
9 ianor 488 . . . . . 6
10 nne 2658 . . . . . . 7
11 nne 2658 . . . . . . 7
1210, 11orbi12i 521 . . . . . 6
139, 12bitr2i 250 . . . . 5
14 ianor 488 . . . . . 6
15 nne 2658 . . . . . . 7
16 nne 2658 . . . . . . 7
1715, 16orbi12i 521 . . . . . 6
1814, 17bitr2i 250 . . . . 5
1913, 18anbi12i 697 . . . 4
208, 19syl6ib 226 . . 3
21 pm4.56 495 . . 3
2220, 21syl6ib 226 . 2
2322necon2ad 2670 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  \/wo 368  /\wa 369  =wceq 1395  e.wcel 1818  =/=wne 2652  {cpr 4031
This theorem is referenced by:  prnebg  4212  symg2bas  16423  m2detleib  19133  usgraexmpldifpr  24400  usgvad2edg  32411  zlmodzxzldeplem  33099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-v 3111  df-un 3480  df-sn 4030  df-pr 4032
  Copyright terms: Public domain W3C validator