![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > prneimg | Unicode version |
Description: Two pairs are not equal if at least one element of the first pair is not contained in the second pair. (Contributed by Alexander van der Vekens, 13-Aug-2017.) |
Ref | Expression |
---|---|
prneimg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq12bg 4209 | . . . . 5 | |
2 | orddi 869 | . . . . . 6 | |
3 | simpll 753 | . . . . . . 7 | |
4 | pm1.4 386 | . . . . . . . 8 | |
5 | 4 | ad2antll 728 | . . . . . . 7 |
6 | 3, 5 | jca 532 | . . . . . 6 |
7 | 2, 6 | sylbi 195 | . . . . 5 |
8 | 1, 7 | syl6bi 228 | . . . 4 |
9 | ianor 488 | . . . . . 6 | |
10 | nne 2658 | . . . . . . 7 | |
11 | nne 2658 | . . . . . . 7 | |
12 | 10, 11 | orbi12i 521 | . . . . . 6 |
13 | 9, 12 | bitr2i 250 | . . . . 5 |
14 | ianor 488 | . . . . . 6 | |
15 | nne 2658 | . . . . . . 7 | |
16 | nne 2658 | . . . . . . 7 | |
17 | 15, 16 | orbi12i 521 | . . . . . 6 |
18 | 14, 17 | bitr2i 250 | . . . . 5 |
19 | 13, 18 | anbi12i 697 | . . . 4 |
20 | 8, 19 | syl6ib 226 | . . 3 |
21 | pm4.56 495 | . . 3 | |
22 | 20, 21 | syl6ib 226 | . 2 |
23 | 22 | necon2ad 2670 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
\/ wo 368 /\ wa 369 = wceq 1395
e. wcel 1818 =/= wne 2652 { cpr 4031 |
This theorem is referenced by: prnebg 4212 symg2bas 16423 m2detleib 19133 usgraexmpldifpr 24400 usgvad2edg 32411 zlmodzxzldeplem 33099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-v 3111 df-un 3480 df-sn 4030 df-pr 4032 |
Copyright terms: Public domain | W3C validator |