![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > prodeq2w | Unicode version |
Description: Equality theorem for product, when the class expressions and are equal everywhere. Proved using only Extensionality. (Contributed by Scott Fenton, 4-Dec-2017.) |
Ref | Expression |
---|---|
prodeq2w |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2457 | . . . . . . . . . . . 12 | |
2 | ifeq1 3945 | . . . . . . . . . . . . . 14 | |
3 | 2 | alimi 1633 | . . . . . . . . . . . . 13 |
4 | alral 2822 | . . . . . . . . . . . . 13 | |
5 | 3, 4 | syl 16 | . . . . . . . . . . . 12 |
6 | mpteq12 4531 | . . . . . . . . . . . 12 | |
7 | 1, 5, 6 | sylancr 663 | . . . . . . . . . . 11 |
8 | 7 | seqeq3d 12115 | . . . . . . . . . 10 |
9 | 8 | breq1d 4462 | . . . . . . . . 9 |
10 | 9 | anbi2d 703 | . . . . . . . 8 |
11 | 10 | exbidv 1714 | . . . . . . 7 |
12 | 11 | rexbidv 2968 | . . . . . 6 |
13 | 7 | seqeq3d 12115 | . . . . . . 7 |
14 | 13 | breq1d 4462 | . . . . . 6 |
15 | 12, 14 | 3anbi23d 1302 | . . . . 5 |
16 | 15 | rexbidv 2968 | . . . 4 |
17 | csbeq2 3438 | . . . . . . . . . . 11 | |
18 | 17 | mpteq2dv 4539 | . . . . . . . . . 10 |
19 | 18 | seqeq3d 12115 | . . . . . . . . 9 |
20 | 19 | fveq1d 5873 | . . . . . . . 8 |
21 | 20 | eqeq2d 2471 | . . . . . . 7 |
22 | 21 | anbi2d 703 | . . . . . 6 |
23 | 22 | exbidv 1714 | . . . . 5 |
24 | 23 | rexbidv 2968 | . . . 4 |
25 | 16, 24 | orbi12d 709 | . . 3 |
26 | 25 | iotabidv 5577 | . 2 |
27 | df-prod 13713 | . 2 | |
28 | df-prod 13713 | . 2 | |
29 | 26, 27, 28 | 3eqtr4g 2523 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 \/ wo 368
/\ wa 369 /\ w3a 973 A. wal 1393
= wceq 1395 E. wex 1612 e. wcel 1818
=/= wne 2652 A. wral 2807 E. wrex 2808
[_ csb 3434 C_ wss 3475 if cif 3941
class class class wbr 4452 e. cmpt 4510
iota cio 5554 -1-1-onto-> wf1o 5592 ` cfv 5593 (class class class)co 6296
0 cc0 9513 1 c1 9514 cmul 9518 cn 10561 cz 10889 cuz 11110
cfz 11701 seq cseq 12107 cli 13307 prod_ cprod 13712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-cnv 5012 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-recs 7061 df-rdg 7095 df-seq 12108 df-prod 13713 |
Copyright terms: Public domain | W3C validator |