![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > prodmolem2 | Unicode version |
Description: Lemma for prodmo 13743. (Contributed by Scott Fenton, 4-Dec-2017.) |
Ref | Expression |
---|---|
prodmo.1 | |
prodmo.2 | |
prodmo.3 |
Ref | Expression |
---|---|
prodmolem2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpb 994 | . . 3 | |
2 | 1 | reximi 2925 | . 2 |
3 | fveq2 5871 | . . . . . 6 | |
4 | 3 | sseq2d 3531 | . . . . 5 |
5 | seqeq1 12110 | . . . . . 6 | |
6 | 5 | breq1d 4462 | . . . . 5 |
7 | 4, 6 | anbi12d 710 | . . . 4 |
8 | 7 | cbvrexv 3085 | . . 3 |
9 | reeanv 3025 | . . . . 5 | |
10 | simprlr 764 | . . . . . . . . . . . 12 | |
11 | simprll 763 | . . . . . . . . . . . . . . . 16 | |
12 | uzssz 11129 | . . . . . . . . . . . . . . . . 17 | |
13 | zssre 10896 | . . . . . . . . . . . . . . . . 17 | |
14 | 12, 13 | sstri 3512 | . . . . . . . . . . . . . . . 16 |
15 | 11, 14 | syl6ss 3515 | . . . . . . . . . . . . . . 15 |
16 | ltso 9686 | . . . . . . . . . . . . . . 15 | |
17 | soss 4823 | . . . . . . . . . . . . . . 15 | |
18 | 15, 16, 17 | mpisyl 18 | . . . . . . . . . . . . . 14 |
19 | fzfi 12082 | . . . . . . . . . . . . . . 15 | |
20 | ovex 6324 | . . . . . . . . . . . . . . . . . 18 | |
21 | 20 | f1oen 7556 | . . . . . . . . . . . . . . . . 17 |
22 | 21 | ad2antll 728 | . . . . . . . . . . . . . . . 16 |
23 | 22 | ensymd 7586 | . . . . . . . . . . . . . . 15 |
24 | enfii 7757 | . . . . . . . . . . . . . . 15 | |
25 | 19, 23, 24 | sylancr 663 | . . . . . . . . . . . . . 14 |
26 | fz1iso 12511 | . . . . . . . . . . . . . 14 | |
27 | 18, 25, 26 | syl2anc 661 | . . . . . . . . . . . . 13 |
28 | prodmo.1 | . . . . . . . . . . . . . . . 16 | |
29 | simpll 753 | . . . . . . . . . . . . . . . . 17 | |
30 | prodmo.2 | . . . . . . . . . . . . . . . . 17 | |
31 | 29, 30 | sylan 471 | . . . . . . . . . . . . . . . 16 |
32 | prodmo.3 | . . . . . . . . . . . . . . . 16 | |
33 | eqid 2457 | . . . . . . . . . . . . . . . 16 | |
34 | simplrr 762 | . . . . . . . . . . . . . . . 16 | |
35 | simplrl 761 | . . . . . . . . . . . . . . . 16 | |
36 | simplll 759 | . . . . . . . . . . . . . . . . 17 | |
37 | 36 | adantl 466 | . . . . . . . . . . . . . . . 16 |
38 | simprlr 764 | . . . . . . . . . . . . . . . 16 | |
39 | simprr 757 | . . . . . . . . . . . . . . . 16 | |
40 | 28, 31, 32, 33, 34, 35, 37, 38, 39 | prodmolem2a 13741 | . . . . . . . . . . . . . . 15 |
41 | 40 | expr 615 | . . . . . . . . . . . . . 14 |
42 | 41 | exlimdv 1724 | . . . . . . . . . . . . 13 |
43 | 27, 42 | mpd 15 | . . . . . . . . . . . 12 |
44 | climuni 13375 | . . . . . . . . . . . 12 | |
45 | 10, 43, 44 | syl2anc 661 | . . . . . . . . . . 11 |
46 | eqeq2 2472 | . . . . . . . . . . 11 | |
47 | 45, 46 | syl5ibrcom 222 | . . . . . . . . . 10 |
48 | 47 | expr 615 | . . . . . . . . 9 |
49 | 48 | impd 431 | . . . . . . . 8 |
50 | 49 | exlimdv 1724 | . . . . . . 7 |
51 | 50 | expimpd 603 | . . . . . 6 |
52 | 51 | rexlimdvva 2956 | . . . . 5 |
53 | 9, 52 | syl5bir 218 | . . . 4 |
54 | 53 | expdimp 437 | . . 3 |
55 | 8, 54 | sylan2b 475 | . 2 |
56 | 2, 55 | sylan2 474 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 = wceq 1395 E. wex 1612
e. wcel 1818 =/= wne 2652 E. wrex 2808
[_ csb 3434 C_ wss 3475 if cif 3941
class class class wbr 4452 e. cmpt 4510
Or wor 4804 -1-1-onto-> wf1o 5592 ` cfv 5593 Isom wiso 5594
(class class class)co 6296 cen 7533 cfn 7536 cc 9511 cr 9512 0 cc0 9513 1 c1 9514
cmul 9518 clt 9649 cn 10561 cz 10889 cuz 11110
cfz 11701 seq cseq 12107 chash 12405 cli 13307 |
This theorem is referenced by: prodmo 13743 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-sup 7921 df-oi 7956 df-card 8341 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-fz 11702 df-fzo 11825 df-seq 12108 df-exp 12167 df-hash 12406 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-clim 13311 |
Copyright terms: Public domain | W3C validator |