MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prprc1 Unicode version

Theorem prprc1 4140
Description: A proper class vanishes in an unordered pair. (Contributed by NM, 15-Jul-1993.)
Assertion
Ref Expression
prprc1

Proof of Theorem prprc1
StepHypRef Expression
1 snprc 4093 . 2
2 uneq1 3650 . . 3
3 df-pr 4032 . . 3
4 uncom 3647 . . . 4
5 un0 3810 . . . 4
64, 5eqtr2i 2487 . . 3
72, 3, 63eqtr4g 2523 . 2
81, 7sylbi 195 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  =wceq 1395  e.wcel 1818   cvv 3109  u.cun 3473   c0 3784  {csn 4029  {cpr 4031
This theorem is referenced by:  prprc2  4141  prprc  4142  prex  4694  elprchashprn2  12461  usgraedgprv  24376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-v 3111  df-dif 3478  df-un 3480  df-nul 3785  df-sn 4030  df-pr 4032
  Copyright terms: Public domain W3C validator