![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > prpssnq | Unicode version |
Description: A positive real is a subset of the positive fractions. (Contributed by NM, 29-Feb-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
prpssnq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnpi 9387 | . 2 | |
2 | simpl3 1001 | . 2 | |
3 | 1, 2 | sylbi 195 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 A. wal 1393 e. wcel 1818
A. wral 2807 E. wrex 2808 cvv 3109
C. wpss 3476 c0 3784 class class class wbr 4452
cnq 9251
cltq 9257
cnp 9258 |
This theorem is referenced by: elprnq 9390 npomex 9395 genpnnp 9404 prlem934 9432 ltexprlem2 9436 reclem2pr 9447 suplem1pr 9451 wuncn 9568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-v 3111 df-in 3482 df-ss 3489 df-pss 3491 df-np 9380 |
Copyright terms: Public domain | W3C validator |