Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  prpssnq Unicode version

Theorem prpssnq 9389
 Description: A positive real is a subset of the positive fractions. (Contributed by NM, 29-Feb-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
prpssnq

Proof of Theorem prpssnq
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnpi 9387 . 2
2 simpl3 1001 . 2
31, 2sylbi 195 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  /\wa 369  /\w3a 973  A.wal 1393  e.wcel 1818  A.wral 2807  E.wrex 2808   cvv 3109  C.wpss 3476   c0 3784   class class class wbr 4452   cnq 9251   cltq 9257   cnp 9258 This theorem is referenced by:  elprnq  9390  npomex  9395  genpnnp  9404  prlem934  9432  ltexprlem2  9436  reclem2pr  9447  suplem1pr  9451  wuncn  9568 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-v 3111  df-in 3482  df-ss 3489  df-pss 3491  df-np 9380
 Copyright terms: Public domain W3C validator