![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > prss | Unicode version |
Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
prss.1 | |
prss.2 |
Ref | Expression |
---|---|
prss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unss 3677 | . 2 | |
2 | prss.1 | . . . 4 | |
3 | 2 | snss 4154 | . . 3 |
4 | prss.2 | . . . 4 | |
5 | 4 | snss 4154 | . . 3 |
6 | 3, 5 | anbi12i 697 | . 2 |
7 | df-pr 4032 | . . 3 | |
8 | 7 | sseq1i 3527 | . 2 |
9 | 1, 6, 8 | 3bitr4i 277 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 /\ wa 369
e. wcel 1818 cvv 3109
u. cun 3473 C_ wss 3475 { csn 4029
{ cpr 4031 |
This theorem is referenced by: tpss 4195 prsspwOLD 4203 uniintsn 4324 pwssun 4791 xpsspwOLD 5122 dffv2 5946 fiint 7817 wunex2 9137 hashfun 12495 prdsle 14859 prdsless 14860 prdsleval 14874 pwsle 14889 acsfn2 15060 joinfval 15631 joindmss 15637 meetfval 15645 meetdmss 15651 clatl 15746 ipoval 15784 ipolerval 15786 eqgfval 16249 eqgval 16250 gaorb 16345 pmtrrn2 16485 efgcpbllema 16772 frgpuplem 16790 drngnidl 17877 drnglpir 17901 isnzr2hash 17912 ltbval 18136 ltbwe 18137 opsrle 18140 opsrtoslem1 18148 thlle 18728 isphtpc 21494 axlowdimlem4 24248 usgrarnedg 24384 cusgrarn 24459 frgraun 24996 frisusgranb 24997 frgra2v 24999 frgra3vlem1 25000 frgra3vlem2 25001 2pthfrgrarn 25009 frgrancvvdeqlem3 25032 shincli 26280 chincli 26378 coinfliprv 28421 altxpsspw 29627 fourierdlem103 31992 fourierdlem104 31993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-un 3480 df-in 3482 df-ss 3489 df-sn 4030 df-pr 4032 |
Copyright terms: Public domain | W3C validator |