![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > prssg | Unicode version |
Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 22-Mar-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
prssg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssg 4163 | . . 3 | |
2 | snssg 4163 | . . 3 | |
3 | 1, 2 | bi2anan9 873 | . 2 |
4 | unss 3677 | . . 3 | |
5 | df-pr 4032 | . . . 4 | |
6 | 5 | sseq1i 3527 | . . 3 |
7 | 4, 6 | bitr4i 252 | . 2 |
8 | 3, 7 | syl6bb 261 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 e. wcel 1818 u. cun 3473
C_ wss 3475 { csn 4029 { cpr 4031 |
This theorem is referenced by: prssi 4186 prsspwg 4187 lspprss 17638 lspvadd 17742 topgele 19435 usgraedgprv 24376 usgraedgrnv 24377 usgraedg4 24387 2trllemH 24554 2trllemE 24555 fourierdlem20 31909 fourierdlem50 31939 fourierdlem54 31943 fourierdlem64 31953 fourierdlem76 31965 prelpw 32299 dihmeetlem2N 37026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-un 3480 df-in 3482 df-ss 3489 df-sn 4030 df-pr 4032 |
Copyright terms: Public domain | W3C validator |