![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > prsspwOLD | Unicode version |
Description: An unordered pair belongs to the power class of a class iff each member belongs to the class. (Contributed by NM, 10-Dec-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) Obsolete version of prsspw 4202 as of 25-Mar-2020. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
prsspwOLD.1 | |
prsspwOLD.2 |
Ref | Expression |
---|---|
prsspwOLD |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prsspwOLD.1 | . . 3 | |
2 | prsspwOLD.2 | . . 3 | |
3 | 1, 2 | prss 4184 | . 2 |
4 | 1 | elpw 4018 | . . 3 |
5 | 2 | elpw 4018 | . . 3 |
6 | 4, 5 | anbi12i 697 | . 2 |
7 | 3, 6 | bitr3i 251 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 /\ wa 369
e. wcel 1818 cvv 3109
C_ wss 3475 ~P cpw 4012 { cpr 4031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-un 3480 df-in 3482 df-ss 3489 df-pw 4014 df-sn 4030 df-pr 4032 |
Copyright terms: Public domain | W3C validator |