MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prunioo Unicode version

Theorem prunioo 11678
Description: The closure of an open real interval. (Contributed by Paul Chapman, 15-Mar-2008.) (Proof shortened by Mario Carneiro, 16-Jun-2014.)
Assertion
Ref Expression
prunioo

Proof of Theorem prunioo
StepHypRef Expression
1 simp3 998 . 2
2 xrleloe 11379 . . . 4
323adant3 1016 . . 3
4 df-pr 4032 . . . . . . . . . . 11
54uneq2i 3654 . . . . . . . . . 10
6 unass 3660 . . . . . . . . . 10
75, 6eqtr4i 2489 . . . . . . . . 9
8 uncom 3647 . . . . . . . . . . 11
9 snunioo 11675 . . . . . . . . . . 11
108, 9syl5eq 2510 . . . . . . . . . 10
1110uneq1d 3656 . . . . . . . . 9
127, 11syl5eq 2510 . . . . . . . 8
13123expa 1196 . . . . . . 7
14133adantl3 1154 . . . . . 6
15 snunico 11676 . . . . . . 7
1615adantr 465 . . . . . 6
1714, 16eqtrd 2498 . . . . 5
1817ex 434 . . . 4
19 iccid 11603 . . . . . . 7
20193ad2ant1 1017 . . . . . 6
2120eqcomd 2465 . . . . 5
22 uncom 3647 . . . . . . . 8
23 un0 3810 . . . . . . . 8
2422, 23eqtri 2486 . . . . . . 7
25 iooid 11586 . . . . . . . . 9
26 oveq2 6304 . . . . . . . . 9
2725, 26syl5eqr 2512 . . . . . . . 8
28 dfsn2 4042 . . . . . . . . 9
29 preq2 4110 . . . . . . . . 9
3028, 29syl5eq 2510 . . . . . . . 8
3127, 30uneq12d 3658 . . . . . . 7
3224, 31syl5eqr 2512 . . . . . 6
33 oveq2 6304 . . . . . 6
3432, 33eqeq12d 2479 . . . . 5
3521, 34syl5ibcom 220 . . . 4
3618, 35jaod 380 . . 3
373, 36sylbid 215 . 2
381, 37mpd 15 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  \/wo 368  /\wa 369  /\w3a 973  =wceq 1395  e.wcel 1818  u.cun 3473   c0 3784  {csn 4029  {cpr 4031   class class class wbr 4452  (class class class)co 6296   cxr 9648   clt 9649   cle 9650   cioo 11558   cico 11560   cicc 11561
This theorem is referenced by:  iccntr  21326  ovolioo  21978  uniiccdif  21987  itgioo  22222  rollelem  22390  dvivthlem1  22409  reasinsin  23227  scvxcvx  23315  eliccioo  27627  iccdifioo  31555  iccdifprioo  31556  cncfiooicclem1  31696  fourierdlem102  31991  fourierdlem114  32003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6592  ax-cnex 9569  ax-resscn 9570  ax-1cn 9571  ax-icn 9572  ax-addcl 9573  ax-addrcl 9574  ax-mulcl 9575  ax-mulrcl 9576  ax-mulcom 9577  ax-addass 9578  ax-mulass 9579  ax-distr 9580  ax-i2m1 9581  ax-1ne0 9582  ax-1rid 9583  ax-rnegex 9584  ax-rrecex 9585  ax-cnre 9586  ax-pre-lttri 9587  ax-pre-lttrn 9588  ax-pre-ltadd 9589  ax-pre-mulgt0 9590  ax-pre-sup 9591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3435  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-pss 3491  df-nul 3785  df-if 3942  df-pw 4014  df-sn 4030  df-pr 4032  df-tp 4034  df-op 4036  df-uni 4250  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-tr 4546  df-eprel 4796  df-id 4800  df-po 4805  df-so 4806  df-fr 4843  df-we 4845  df-ord 4886  df-on 4887  df-lim 4888  df-suc 4889  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-riota 6257  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6701  df-1st 6800  df-2nd 6801  df-recs 7061  df-rdg 7095  df-er 7330  df-en 7537  df-dom 7538  df-sdom 7539  df-sup 7921  df-pnf 9651  df-mnf 9652  df-xr 9653  df-ltxr 9654  df-le 9655  df-sub 9830  df-neg 9831  df-div 10232  df-nn 10562  df-n0 10821  df-z 10890  df-uz 11111  df-q 11212  df-ioo 11562  df-ico 11564  df-icc 11565
  Copyright terms: Public domain W3C validator