![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > pssdifcom2 | Unicode version |
Description: Two ways to express non-covering pairs of subsets. (Contributed by Stefan O'Rear, 31-Oct-2014.) |
Ref | Expression |
---|---|
pssdifcom2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssconb 3636 | . . . 4 | |
2 | 1 | ancoms 453 | . . 3 |
3 | difcom 3912 | . . . . 5 | |
4 | 3 | a1i 11 | . . . 4 |
5 | 4 | notbid 294 | . . 3 |
6 | 2, 5 | anbi12d 710 | . 2 |
7 | dfpss3 3589 | . 2 | |
8 | dfpss3 3589 | . 2 | |
9 | 6, 7, 8 | 3bitr4g 288 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 \ cdif 3472
C_ wss 3475 C. wpss 3476 |
This theorem is referenced by: fin2i2 8719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 |
Copyright terms: Public domain | W3C validator |